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ABSTRACT
We propose a functional censored quantile regression model to describe the time-varying relationship
between time-to-event outcomes and corresponding functional covariates. The time-varying effect is
modeled as an unspecified function that is approximated via B-splines. A generalized approximate cross-
validation method is developed to select the number of knots by minimizing the expected loss. We
establish asymptotic properties of the method and the knot selection procedure. Furthermore, we conduct
extensive simulation studies to evaluate the finite sample performance of our method. Finally, we analyze
the functional relationship between ambulatory blood pressure trajectories and clinical outcome in stroke
patients. The results reinforce the importance of the morning blood pressure surge phenomenon, whose
effect has caught attention but remains controversial in the medical literature. Supplementary materials for
this article are available online.
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1. Introduction

Censored quantile regression (CQR) has been studied to differ-
entiate covariate effects at different quantiles of survival times
(Ying, Jung, and Wei 1995; Lindgren 1997; Koenker and Geling
2001; Bang and Tsiatis 2002; Chernozhukov and Hong 2002;
Portnoy 2003; Peng and Huang 2008; Wang and Wang 2009).
For example, Portnoy (2003) developed a recursively reweighed
estimation procedure based on the principle of self-consistency
for the Kaplan–Meier estimator; Wang and Wang (2009) devel-
oped an estimation algorithm based on the redistribution-of-
mass idea; Peng and Huang (2008) proposed a martingale-based
estimation procedure, which automatically accommodates the
monotone structure of the parameters of interest, and in turn
naturally adapts to the quantile function estimation.

However, when the covariates are partially functional, and
the time-varying effects are of interest, the existing methods
are not readily applicable. This is because the unknown param-
eters are infinite dimensional, which violates the assumptions
of the existing models. Our motivating application falls into
this realm—where neurologists are interested in studying the
functional relationship between ambulatory blood pressure tra-
jectories (i.e., functions) and time to stroke recurrence for stroke
patients. Stroke is one of the leading causes of death across the
world, and hypertension is the primary risk factor for stroke.
Hence, it is of great clinical importance to understand such
functional relationship. This clinical question motivates us to
propose a functional CQR model in this article, which are useful
for other similar survival analysis scenarios as well.
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Mean-based regression methods have been extended to
accommodate functional covariates. Qu, Wang, and Wang
(2016) proposed a functional proportional hazards model,
which however is insufficient to characterize the higher or
lower quantiles of the survival times. Furthermore, the model
relies upon the proportional hazards assumption, which
may not be satisfied in practice. In particular, we applied
the method in Qu, Wang, and Wang (2016) to analyze the
motivating stroke blood pressure data. The estimated effect
of the baseline blood pressure on the disease risk is −0.0106
with the 95% confidence interval (−0.0168, −0.0045), implying
that a higher blood pressure leads to a lower risk of stroke
recurrence, which contradicts with physicians’ understanding
of the disease. The contradiction may arise due to the violation
of the proportional hazards assumption. Based on physicians’
classification of the blood pressure patterns, we cluster the blood
pressure curves into three groups and plot the logarithm of the
cumulative hazard functions of the three groups in Figure 1.
Clearly, the three cumulative hazard curves cross without clear
separation, indicating that the proportional hazards model is
not appropriate for the data. Other than modeling the hazard
function, the semiparametric accelerated failure time (AFT)
model can also be used to describe the mean structure of
the survival times without imposing an error distribution
(Prentice 1978; Buckley and James 1979; Louis 1981; Wei
and Gail 1983; Wei, Ying, and Lin 1990). Besides the lack of
ability to characterize the survival quantiles, the AFT model
generally requires the errors to be identically distributed, and
independent of covariates (Peng and Huang 2008).

© 2019 American Statistical Association
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Figure 1. The logarithm of the three cumulative hazard functions calculated by the
Kaplan–Meier method.

Functional quantile regression has been studied under the
noncensoring framework (Cardot, Crambes and Sarda 2005;
Ferraty, Rabhi, and Vieu 2005; Chen and Pouzo 2012; Kato
2012). For the censoring case, we propose a partially functional
quantile regression model to handle a vector of covariates and
a functional covariate jointly. Let T denote the survival time, X
be the vector of covariates, and Z(s) be the functional covariate.
In practice, X can be the baseline measurements, while Z(s) can
be the follow-up measurements, for example, the continuously
monitored ambulatory blood pressure levels in our motivating
application. We then assume that T, X, and Z(s) follow a linear
location-scale design (Kato 2012). To fix ideas, when the sur-
vival time T is fully observed, the functional linear regression
model can be written as

log(T) = bT
1 X +

∫ 1

0
ψ1(s)Z(s)ds

+ε

{
bT

2 X +
∫ 1

0
ψ2(s)Z(s)ds

}
,

where ε is a zero-mean random error independent of X and Z(s).
The location-scale design not only defines the dependency

of the quantile functions on the covariates, but also induces
a quantile model with parameters varying with the quantiles.
Furthermore, the linear structure is crucial for the computa-
tional feasibility in reality. Under this specification, the quantile
function QT(τ |X, Z; β , α) ≡ inf t{Pr (T ≤ t|X, Z) > τ } can be
modelled as

QT(τ |X, Z; β , α) = exp
{
βT(τ )X +

∫ 1

0
α(s, τ)Z(s)ds

}
, (1)

where β(τ ) = b1 + b2Qε(τ ) is the p-dimensional coefficient
vector, and α(s, τ) = ψ1(s) + ψ2(s)Qε(τ ) is a function on
L2[0, 1], with Qε(τ ) being the quantile function for ε.

Simultaneous estimation of α(s, τ) and β(τ ) is not an easy
task, because α(s, τ) is an infinite dimensional parameter.
Simply treating α(s, τ) as a multivariate covariate yields an
extremely large parameter space; as such the parameters cannot
be estimated theoretically with proper convergence rates and
practically with reasonable computational power. To alleviate
this curse of dimensionality, Kato (2012) adopted the functional
principle component procedure of Yao, Müller, and Wang
(2005). The functional expansion method is appealing, because
through projection, the estimation reduces to a linear problem,
which operationally falls in the convex optimization paradigm
and can be implemented efficiently by existing simplex or
interior point methods (Peng and Huang 2008).

However, the approach in Kato (2012) is not readily appli-
cable to the CQR, especially when the censoring mechanism is
random and the censoring times are conditionally independent
of the survival times given covariates. To address these issues, we
develop a functional expansion approach for CQR, namely the
functional censored quantile regression (FCQR), which adopts
the martingale estimation procedure in Peng and Huang (2008).
We approximate the unknown functionals using B-spline bases.
By properly controlling the number of B-spline knots, we show
that the B-spline approach yields the parametric and nonpara-
metric convergence rates for the finite and functional estimates,
respectively. Operationally, our estimation procedure is similar
to that of Peng and Huang (2008); however, the development
of the theoretical properties of our estimators is highly non-
trivial because the number of unknown parameters increase
with sample size. One critical issue of the B-spline functional
approximation is to select the number of knots, especially with
censored data. The usual cross-validation method based on
martingale residuals may not work well due to changes in the
censoring rates between training and validation datasets. We
propose a generalized approximate cross-validation (GACV)
method for selection of the B-spline knots. The GACV approach
is computationally efficient and, more importantly, it avoids
random partitioning of the samples, which may lead to invalid
results due to inconsistency in the censoring rates and sample
sizes between the subsamples and the original samples.

The rest of the article is organized as follows. In Section 2,
we develop a class of semiparametric methods to estimate both
β(τ ) and α(s, τ). We derive the asymptotic properties of the
estimators in Section 3, and introduce the GACV method in
Section 4. We illustrate the finite sample performance of the
proposed method through simulation studies in Section 5. The
analysis of the blood pressure and stroke recurrence data is
carried out in Section 6. We conclude the article in Section 7.
The technical proofs are presented in the Appendix.

2. Model and Estimation

Let Ti be the survival time, Ci be the censoring time, Yi = Ti ∧
Ci, �i = I(Ti ≤ Ci). Furthermore, we define Ni(t) = I(Ti ≤
t, �i = 1) to be the counting process for i = 1, . . . , n, and
�(t) to be the cumulative hazard function. Moreover, let Zi(t)
be a left-continuous process, and Xi be the baseline covariate
vector. Without loss of generality, we assume t ∈ [0, 1], a
compact interval. For example, every subject in the stroke blood
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pressure data has continuous systolic blood pressure (SBP) mea-
surements over a 24-hr period.

Consider Model (1), where β(τ ) and α(s, τ) are unknown
parameters, and define the following martingale

Mi(t) = Ni(t) − �(t ∧ Yi), (2)

which, according to Fleming and Harrington (2011), satisfies

E
[
Mi

{
QT(τ |Xi, Zi; β0, α0)

}] = 0,

where β0(τ ) and α0(·, τ) are the true parameters of interest.
This mean zero property allows us to construct the estimating
equation based on the sample version of the conditional mean.

In the martingale Mi(t), although Ni(t) is observed, the
hazard �(t) is not fully specified at every time point. However,
the hazard function has the close form as

� {QT(τ |Xi, Zi; β , α) ∧ Yi}
=

∫ τ

0
I [Yi ≥ QT(u|Xi, Zi; β , α)] dH(u),

at the time of QT(τ |Xi, Zi; β , α) with H(u) = −log(1−u) (Peng
and Huang 2008). This quantity can be well approximated by

�̃
[
QT(τj|Xi, Zi; β , α) ∧ Yi

] =
j−1∑
k=0

I [Yi ≥ QT(τk|Xi, Zi; β , α)]

×{H(τk+1) − H(τk)},

where τk ∈ TL with TL = {0 = τ0 < τ1 < · · · < τL < τU}
for τU < 1. This hazard approximation allows us to perform the
estimation based on the mean zero property of the martingales
at specified time points (Peng and Huang 2008).

Assume α(·, u) ∈ Cq[0, 1], a continuous differentiable func-
tion with order q. We approximate α(·, u) by B-splines in the
form of Br(·)Tγ (u) (De Boor 1978), where Br(·) is a known
base function of time, and γ (u) is the unknown coefficient at
quantile u. De Boor (1978) showed that there exists γ 0 such
that supt∈[0,1] |BT

r (t)γ 0(τ ) − α0(t, τ)| = Op(hq
b) for α0(t, τ) ∈

Cq([0, 1]). Let Wi = ∫ 1
0 Br(s)Zi(s)ds be the d-dimensional

transformed covariate vector, β̂(τ ) and γ̂ (τ ) be the consistent
estimators for β(τ ) and γ (τ ), respectively. Since both Br and Zi
are given, Wi is predefined and can be treated as observed.

Let

Q(τ |Xi, Wi; β , γ ) = exp{βT(τ )Xi + γ T(τ )Wi}.

Combining the approximations for � and α(·, u), we can esti-
mate {βT(τj), γ T(τj)}T sequentially, for j = 1, . . . , L, via solving

0 =
n∑

i=1
(XT

i , WT
i )

⎛
⎝Ni{Q(τj|Xi, Wi; β , γ )}

−
j−1∑
k=0

I{Yi ≥ Q(τk|Xi, Wi; β̂ , γ̂ )}{H(τk+1) − H(τk)}
⎞
⎠ .

(3)

In (3), because QT(0|X, Z; β0, α0) = 0, we always set
Q(0|X, W; β̂ , γ̂ ) = 0. Operationally the procedure reduces
to the censored linear quantile estimation described in Peng

and Huang (2008). It is worth mentioning that solving (3) is
equivalent to minimizing

−
n∑

i=1

[
log(Yi) − log{Q(τj|Xi, Wi; β , γ )}]

×
⎛
⎝Ni{Q(τj|Xi, Wi; β , γ )}

−
j−1∑
k=0

I[Yi ≥ Q(τk|Xi, Wi; β̂ , γ̂ )]{H(τk+1) − H(τk)}
⎞
⎠,

(4)
with respect to β(τj) and γ (τj) (Koenker 2008). The minimiza-
tion algorithm has been implemented in the R quantreg package
(Koenker 2012) and can be readily applied to estimate β(τ ) and
γ (τ ) simultaneously.

The reasons for choosing the B-spline approximation are
2-fold. First, under complete data settings, the B-spline based
quantile function has the desirable finite-sample property that
the quantile curves divide the sample by an approximate ratio
of τ/(1 − τ) (He and Shi 1994). Second, we choose the B-spline
bases instead of the eigen-bases used in Kato (2012) to incor-
porate heterogeneity in the functional covariates. In the stroke
data, the blood pressure curves are not identically distributed
across the patients; hence, the covariance estimator is not valid
for constructing unified eigen-bases across the samples.

3. Asymptotics

To derive asymptotic properties, we note the following technical
challenge: as the dimensions for Wi and γ (τ ) grow with the
sample size, the usual law of large numbers and central limit
theorem are not applicable. To offer more insights, the score
function on the right-hand side of (3) is not of order Op(1)

because otherwise its L2 norm is infinity as the dimension of
Wi grows. Hence, properly controlling the number of knots is
crucial.

For an order-r spline, let N be the number of interior knots,
which yields the dimension for γ (τ ) to be d = N + r. Define
‖ · ‖ and ‖ · ‖∞ to be the L2 and L∞ vector norms, respectively.
We select the knots uniformly in the interval of [0, 1] with the
distance hb = 1/N. Furthermore, to control the order of conver-
gence, we restrict the growing rate as N = o(n). More detailed
conditions are listed in Condition (A2) in Appendix A. We
establish the estimation consistency in Theorem 1, the asymp-
totical normality in Theorem 2, and the convergence of the
functional estimator in Corollary 1. The detailed derivations are
all presented in Appendix A.

Theorem 1. Assume that Conditions (A1)–(A6) hold, and β̂(τj)
and γ̂ (τj) satisfy

0 =
n∑

i=1
(XT

i , WT
i )T

⎛
⎝Ni[Q(τj|Xi, Wi; β̂ , γ̂ )]

−
j−1∑
k=0

I[Yi ≥ Q(τk|Xi, Wi; β̂ , γ̂ )]{H(τk+1) − H(τk)}
⎞
⎠ .
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Then,

‖{β̂T
(τj), γ̂ T(τj)}T − {βT

0 (τj), γ T
0 (τj)}T‖∞ = op(1),

and

‖{β̂T
(τj), γ̂ T(τj)}T − {βT

0 (τj), γ T
0 (τj)}T‖ = op(1).

Furthermore, we define F(t|Z) = Pr(T ≤ t|X, Z),
F̄(t|X, Z) = 1 − F(t|X, Z), F̃(t|X, Z) = Pr(Y ≤ t, � = 1|X, Z),
f (t|X, Z) = dF(t|X, Z)/dt, f̄ (t|X, Z) = dF̄(t|X, Z)/dt, and
f̃ (t|X, Z) = d̃F(t|X, Z)/dt. In addition, we define the population
score functions as

Sβ(Yi, Xi, Zi; τ , β , α)

= Xi

(
Ni [QT(τ |Xi, Zi; β , α)]

−
∫ τ

0
I [Yi ≥ QT(u|Xi, Zi; β , α)] dH(u)

)
,

Sγ (Yi, Xi, Zi; τ , β , α)

= Wi

(
Ni {QT(τ |Xi, Zi; β , α)}

−
∫ τ

0
I [Yi ≥ QT(u|Xi, Zi; β , α)] dH(u)

)
,

and the corresponding Hessian matrix as

M{β(τ ), α(·, τ)}
= E

[{
(XT

i , WT
i )T}⊗2 f̃ {QT(τ |Xi, Zi; β , α)|Xi, Zi}

× QT(τ |Xi, Zi; β , α)
]

.

Furthermore, we define the variance and covariance compo-
nents as

J{β(τ ), α(·, τ)} = E
[{

(XT
i , WT

i )T}⊗2 f̄ {QT(τ |Xi, Zi; β , α)|Xi, Zi}
× exp {QT(τ |Xi, Zi; β , α)}

]
.

Let
∏

be the product integral (Gill and Johansen 1990; Ander-
sen et al. 2012) and define

φ {G(τ ), A(τ ), B(τ )} ≡
∫ τ

0

∏
u∈(s,τ ]

×[Iq + A(u)B(u)−1dH(u)]dG(s),

for arbitrary matrix valued functions A and B.
In the following theorem, we show that β̂(τ ) and γ̂ (τ )

achieve parametric and nonparametric convergent rates,
respectively.

Theorem 2. Assume that Conditions (A1)–(A6) hold, and an =
op(n−1/2), then

sup
τ∈[0,τU ]

‖β̂(τ ) − β0(τ )‖ = Op(n−1/2), and

sup
τ∈[0,τU ]

‖γ̂ (τ ) − γ 0(τ )‖ = Op(n−1/2h−1/2
b ).

For each τ ,

n1/2[{β̂(τ ) − β0(τ )}T, {γ̂ (τ ) − γ 0(τ )}T]T

= M−1{β0(τ ), α0(·, τ)} · φ[G(τ ), J{β0(τ ), α0(·, τ)},
M{β0(τ ), α0(·, τ)}] · {1 + op(1)},

where G = (G1, h1/2
b G2), G1(·) is a vector of zero-mean Gaus-

sian processes with covariance

�1(s, t) = E{Sβ(Yi, Wi; s, β0, α0)Sβ(Yi, Wi; t, β0, α0)
T},

G2(·) is a vector of zero-mean Gaussian processes with covari-
ance

�2(s, t) = h−1
b E{Sγ (Yi, Wi; s, β0, α0)ST

γ (Yi, Wi; t, β0, α0)},

and furthermore,

�12(s, t) = h−1/2
b E{Sβ(Yi, Wi; s, β0, α0)ST

γ (Yi, Wi; t, β0, α0)}.

The variances of β̂(τ ) and γ̂ (τ ) comprise of both integration
and product integral. To alleviate computational instability, we
use the bootstrap method for variance estimation.

Given the convergency of γ̂ (τ ), the estimation error for
α0(s, τ) is a combination of estimation bias and variance as
shown in the following Corollary 1.

Corollary 1. Assume that Conditions (A1)–(A6) hold, and an =
op(n−1/2), then

sup
s∈[0,1]

|BT
r (s)γ̂ (τ ) − α0(s, τ)| = Op(n−1/2h−1/2

b + hq
b).

Furthermore, if n1/2N−1/2−q → 0 as n → ∞, then for each
s ∈ [0, 1],

n1/2h1/2
b {BT

r (s)γ̂ (τ ) − α0(s, τ)}
= BT

r (s)(0d×p, h1/2
b Id×d) · M−1{β0(τ ), α0(·, τ)}

·φ[G(τ ), J{β0(τ ), α0(·, τ)}, M{β0(τ ), α0(·, τ)}]
×{1 + op(1)}.

4. Generalized Approximate Cross-validation for
Knot Selection

We consider the important problem of knot selection in a data-
driven fashion, and study the selection procedure’s theoretical
property. For simplicity, the knots are uniformly selected on
[0, 1] with the maximum number sn = Op{n1/(2q+1)}. Then
we extend the GACV procedure to select the number of knots,
which is asymptotically equivalent to the leave-one-out cross-
validation (Yuan 2006).

More specifically, let S = (j1, . . . , jNS) be the indices of
the interior knots with dS = NS + r bases. Let M be the set
containing all S such that |S| ≤ sn, where | · | represent the
cardinality of a set. We assume that NS satisfies Condition (B1)
in Appendix B for all S ∈ M. We modify the notation to
reflect the dependence on the set S . Furthermore, let γ S be the
corresponding B-spline coefficient whenS is chosen and γ S0(τ )

be the coefficient that satisfies

sup
t∈[0,1]

|BrS(t)Tγ S0(τ ) − α0(t, τ)| = Op(N−q
S ),

and WSi = ∫ 1
0 BrS(u)Zi(u)du.
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Given that the estimation procedure is essentially to mini-
mize (4), we define the objective function for GACV as

GACV(τj, dS, β , γ S)

= −
n∑

i=1

[
log(Yi) − {β(τj)

TXi + γ S(τj)
TWSi}

]

×
⎛
⎝Ni[exp{β(τj)

TXi + γ S(τj)
TWSi}]

−
j−1∑
k=0

I[Yi ≥ exp{β̂S(τk)
TXi + γ̂ S(τk)

TWSi}]

{H(τk+1) − H(τk)}
⎞
⎠ /{n − Cn(dS + p)}.

with Cn = Op[{log(n)}ω], 0 ≤ ω ≤ 1, where ω = 1/2 generally
works well in our numerical studies. The GACV with ω = 0 and
ω = 1 is asymptotically equivalent to the Akaike information
criterion and Bayesian information criterion, respectively (Kato
2012).

We select dS by minimizing the integrated GACV

IGACV =
L∑

j=1
GACV(τj, dS, β̂S, γ̂ S)/L,

where β̂S and γ̂ S are the estimators solving (3) when d = dS and
L is the number of evaluated quantiles.

Below we study the selection consistency of the IGACV
criterion. Let F0(τj−) be the sigma-field generated by[

Yi, �i, QT(u|Xi, Zi; β0, α0), Wi, Zi, 0 ≤ u < τj,
i = 1, . . . , n,S ∈ M] .

Consider the problem of minimizing, over S ∈ M, the follow-
ing criterion

E
{

− [
log(Yi) − log{Q(τj|Xi, WSi; βS, γ S)}

]
×

(
Ni{Q(τj|Xi, WSi; βS, γ S)}

−
∫ τj

0
I
[
Yi ≥ QT(u|Xi, Zi; β0, α0)

]
du}

)
|F0(τj−)

}
.

Finally, let S∗ be the set of the interior knots that the corre-
sponding γ S∗0(τj), together with β0(τj), is the unique mini-
mizer of the above criterion.

Let MO = {S ∈ M : S ⊃ S∗,S = S∗}, and MU = {S ∈
M : S ⊃ S∗}.

Theorem 3. Assuming that Conditions (B1)–(B3) hold, then

lim
n→∞ Pr

{
min

S∈MO, S∈S
GACV(τj, dS, β̂S, γ̂ S)

> GACV(τj, dS∗ , β0, γ S∗0)
} = 1,

and

lim
n→∞ Pr

{
min

S∈MU , S∈S
GACV(τj, dS, β̂S, γ̂ S)

> GACV(τj, dS∗ , β0, γ S∗0)
} = 1.

Theorem 3 suggests the selection consistency of the GACV
procedure: both over-selection and under-selection yield a
smaller GACV than the optimal one with probability tending
to one. Furthermore, because the theorem holds for every
τk, as long as β0(τk) and α0(·, τk), k < j, are consistently
estimated; and the grid on τ is sufficiently dense (see the proof
of Theorem 3 in Appendix B), the IGACV procedure also
guarantees the selection consistency asymptotically.

5. Simulation

5.1. Finite Sample Performance Without IGACV Procedure

We conduct extensive simulation studies to assess the finite-
sample performance of the FCQR procedure. We generate the
event time from the model,

log(Ti) = b1X1i +
∫ 1

0
Zi(s)ψ(s)ds +

{
b2X2i +

∫ 1

0
Zi(s)ds

}
εi,

where X1i is a standard normal variate, X2i is a variate uniformly
distributed on [0, 1], and εi is a normal random error with mean
zero and variance σ 2

ε . The functional covariate Zi(s) and ψ(s)
are given by

Zi(s) =
∣∣∣∣∣

K∑
k=1

ζkUikφk(s)

∣∣∣∣∣ ,

ψ(s) = −4 +
K∑

k=2
4(−1)kk−2[√2 cos{(k − 1)πs}],

with ζk = (−1)k+1k−v/2, K = 50, v = 1, 1.5, 2, 2.5, φ1 = 1
and φk = √

2 cos{(k − 1)πs} for k > 1. Furthermore, Uki is
uniformly distributed on [−√

3,
√

3], and the coefficients are set
to be b1 = 1 and b2 = 2.

Let Qε(τ ) be the τ th quantile of εi. The quantities in (1) can
be written as Xi = (X1i, X2i)T, α(s, τ) = ψ(s) + Qε(τ ), and
β(τ ) = {b1, b2Qε(τ )}T. We generate 1000 simulated datasets
of sample size n = 200 and 500 for each value of v =
1, 1.5, 2, 2.5. We use cubic splines to approximate α(s, τ), while
setting the number of knots d as the smallest integer greater
than 1.5n1/5. The censoring times are generated independently
to yield desired censoring rates.

Tables 1–3 show the estimation results for censoring rates
of 10%, 20%, and 40%, respectively. The empirical confidence
interval is defined as the 95% upper and lower quantiles of the
sample estimators. For the bootstrap confidence intervals, we
take 200 bootstrap samples to obtain the bootstrap standard
error and then use normal approximation. Both the biases and
standard errors of our estimators are small and the 95% coverage
probabilities are close to the nominal level. The estimation
errors decrease as the sample size increases. The coverage prob-
abilities are closer to the normal level for a lower censoring rate
(10%) than those for a higher censoring rate (40%).

We also evaluate the performance of estimating α(s, τ). To
save space, we only show the results for estimating α(s, 0.5)

with v = 2. (The results under other settings are similar.)
Figure 2 displays the time-varying estimators, the empirical and
bootstrap 95% confidence intervals for α(s, 0.5). The estimated
curves are close to the true ones; the bootstrap and empirical
confidence intervals nearly overlap across all the scenarios.
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Table 1. Estimation results from 1000 simulations for β̂(τ ) = {β̂1(τ ), β̂2(τ )}T at different quantiles with σε = 0.2 and a censoring rate of 10%.

n = 200 n = 500

v β̂(τ ) BIAS SD SE CP BIAS SD SE CP

1 β̂1(0.3) 0.001 0.054 0.060 0.939 0.000 0.033 0.039 0.960
β̂2(0.3) 0.017 0.179 0.205 0.964 0.008 0.112 0.132 0.960
β̂1(0.4) 0.001 0.050 0.058 0.960 0.000 0.033 0.037 0.952
β̂2(0.4) 0.015 0.174 0.197 0.956 0.006 0.109 0.128 0.958
β̂1(0.5) 0.000 0.051 0.058 0.949 0.001 0.034 0.038 0.956
β̂2(0.5) 0.011 0.178 0.195 0.946 0.007 0.109 0.127 0.968
β̂1(0.6) 0.002 0.052 0.061 0.947 0.000 0.034 0.039 0.956
β̂2(0.6) 0.006 0.182 0.203 0.954 0.007 0.112 0.128 0.957
β̂1(0.7) 0.002 0.054 0.063 0.952 0.000 0.035 0.041 0.955
β̂2(0.7) 0.007 0.187 0.214 0.953 0.005 0.117 0.139 0.954

1.5 β̂1(0.3) 0.001 0.042 0.048 0.952 0.000 0.026 0.031 0.961
β̂2(0.3) 0.016 0.142 0.163 0.954 0.009 0.089 0.104 0.961
β̂1(0.4) 0.001 0.041 0.046 0.953 0.001 0.026 0.029 0.955
β̂2(0.4) 0.013 0.139 0.157 0.961 0.007 0.087 0.100 0.959
β̂1(0.5) 0.001 0.041 0.046 0.948 0.000 0.027 0.030 0.957
β̂2(0.5) 0.010 0.143 0.153 0.937 0.009 0.088 0.100 0.961
β̂1(0.6) 0.001 0.041 0.048 0.954 0.000 0.026 0.030 0.950
β̂2(0.6) 0.006 0.144 0.160 0.953 0.007 0.089 0.102 0.955
β̂1(0.7) 0.001 0.044 0.050 0.953 0.000 0.027 0.032 0.960
β̂2(0.7) 0.008 0.149 0.168 0.945 0.008 0.094 0.109 0.959

2 β̂1(0.3) 0.000 0.038 0.044 0.958 0.001 0.024 0.029 0.967
β̂2(0.3) 0.016 0.127 0.144 0.943 0.009 0.081 0.095 0.960
β̂1(0.4) 0.000 0.037 0.042 0.950 0.000 0.024 0.027 0.952
β̂2(0.4) 0.015 0.123 0.139 0.953 0.007 0.079 0.091 0.955
β̂1(0.5) 0.001 0.037 0.042 0.954 0.001 0.024 0.028 0.956
β̂2(0.5) 0.009 0.127 0.136 0.938 0.008 0.080 0.091 0.962
β̂1(0.6) 0.001 0.037 0.043 0.957 0.001 0.025 0.028 0.952
β̂2(0.6) 0.005 0.127 0.141 0.947 0.009 0.082 0.093 0.950
β̂1(0.7) 0.001 0.040 0.045 0.954 0.001 0.025 0.030 0.966
β̂2(0.7) 0.008 0.133 0.149 0.946 0.008 0.086 0.100 0.957

2.5 β̂(1) 0.000 0.036 0.042 0.967 0.000 0.022 0.027 0.967
β̂(2) 0.014 0.121 0.134 0.951 0.009 0.074 0.087 0.958
β̂(1) 0.000 0.035 0.040 0.955 0.000 0.022 0.025 0.962
β̂(2) 0.014 0.115 0.130 0.954 0.008 0.073 0.083 0.954
β̂(1) 0.001 0.036 0.040 0.951 0.000 0.023 0.026 0.954
β̂(2) 0.008 0.118 0.127 0.942 0.008 0.074 0.083 0.953
β̂(1) 0.001 0.035 0.041 0.961 0.000 0.023 0.026 0.953
β̂(2) 0.006 0.118 0.132 0.942 0.009 0.076 0.084 0.941
β̂(1) 0.001 0.037 0.043 0.953 0.000 0.023 0.028 0.964
β̂(2) 0.007 0.126 0.140 0.951 0.009 0.080 0.091 0.950

NOTES: SD represents the empirical standard deviation, SE is the standard error, and CP stands for the 95% coverage probability.

5.2. Performance of IGACV for Knot Selection

To illustrate the performance of the IGACV procedure, we
mimic the real data in the second set of simulations. In particu-
lar, we generate n = 297 survival times from the model

log(Ti) =
∫ 1

0
Zi(s)ψ(s)ds +

{
b1Z1i +

∫ 1

0
Zi(s)ds

}
εi,

where Zi(s) = SBPi(s) + Ui(s) and Z1i = min(SBPi) + U1i
with SBPi(s) corresponding to the SBP trajectory for the ith
individual, and Ui(s) and U1i are uniform random variables on
[−10, 10]. We set ψ(s) = 5{sin(π/2 + 13πs/4)}, b1 = 0.1,
and generate εi from a normal distribution with mean 0 and
variance 0.04. Under this setting, we have β(τ ) = b1Qε(τ ) and
α(s, τ) = ψ(s) + Qε(τ ). The censoring times are generated to
achieve censoring rates of 10%, 20%, and 40%, respectively.

For the selection of the number of B-spline knots, we also
consider minimizing the integrated Bayesian information cri-
terion (IBIC, Kato 2012; Lee, Noh, and Park 2014). Table 4
presents the number of times a specific dS is chosen when each
criterion reaches the minimum value in 500 replications. We
evaluate IGACV and IBIC over the choices of dS = 4, 5, 6, 7, 8.
In all the settings, IGACV chooses dS = 6 as the optimal num-
ber of basis functions, while IBIC tends to select the boundary
value dS = 4, the minimal number of knots for the cubic spline.
This comparison result suggests that IBIC is conservative in the
knots selection.

We present the estimation results for dS = 6 in Table 5,
Figures 3 and 4, which show that both β̂S(τ ) and BT

rS(s)γ̂ S(τ )

are close to the true values, the coverage probabilities reach the
nominal level, and the estimated confidence intervals approach
the empirical counterparts under various censoring rates for τ

between 0.3 and 0.7. Due to sparse event information during



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 7

Table 2. Estimation results from 1000 simulations for β̂(τ ) = {β̂1(τ ), β̂2(τ )}T at different quantiles with σε = 0.2 and a censoring rate of 20%.

n = 200 n = 500

v β̂(τ ) BIAS SD SE CP BIAS SD SE CP

1 β̂1(0.3) 0.001 0.051 0.057 0.956 0.001 0.031 0.035 0.953
β̂2(0.3) 0.014 0.172 0.197 0.960 0.009 0.107 0.124 0.957
β̂1(0.4) 0.000 0.048 0.054 0.961 0.001 0.030 0.034 0.949
β̂2(0.4) 0.010 0.171 0.189 0.950 0.006 0.105 0.119 0.963
β̂1(0.5) 0.000 0.048 0.054 0.956 0.000 0.030 0.034 0.946
β̂2(0.5) 0.010 0.170 0.186 0.948 0.009 0.102 0.118 0.960
β̂1(0.6) 0.001 0.049 0.056 0.940 0.001 0.030 0.034 0.951
β̂2(0.6) 0.007 0.172 0.192 0.948 0.008 0.104 0.118 0.964
β̂1(0.7) 0.001 0.051 0.057 0.933 0.000 0.032 0.036 0.949
β̂2(0.7) 0.007 0.178 0.200 0.947 0.006 0.110 0.126 0.954

1.5 β̂1(0.3) 0.001 0.041 0.045 0.955 0.001 0.024 0.028 0.951
β̂2(0.3) 0.015 0.137 0.156 0.952 0.009 0.085 0.099 0.957
β̂1(0.4) 0.000 0.038 0.043 0.941 0.001 0.024 0.027 0.959
β̂2(0.4) 0.009 0.136 0.149 0.952 0.006 0.082 0.094 0.951
β̂1(0.5) 0.000 0.038 0.043 0.955 0.000 0.024 0.027 0.954
β̂2(0.5) 0.008 0.137 0.147 0.948 0.008 0.083 0.094 0.962
β̂1(0.6) 0.001 0.039 0.044 0.941 0.001 0.024 0.027 0.950
β̂2(0.6) 0.007 0.139 0.152 0.949 0.009 0.084 0.094 0.966
β̂1(0.7) 0.001 0.041 0.046 0.943 0.000 0.025 0.029 0.959
β̂2(0.7) 0.008 0.142 0.159 0.940 0.008 0.088 0.100 0.948

2 β̂1(0.3) 0.001 0.036 0.040 0.954 0.000 0.022 0.025 0.946
β̂2(0.3) 0.014 0.122 0.136 0.938 0.008 0.074 0.086 0.954
β̂1(0.4) 0.000 0.034 0.039 0.952 0.001 0.021 0.023 0.953
β̂2(0.4) 0.011 0.118 0.130 0.943 0.006 0.072 0.081 0.955
β̂1(0.5) 0.001 0.033 0.038 0.960 0.000 0.021 0.024 0.949
β̂2(0.5) 0.007 0.120 0.129 0.942 0.008 0.073 0.081 0.963
β̂1(0.6) 0.001 0.034 0.039 0.949 0.000 0.021 0.024 0.956
β̂2(0.6) 0.006 0.120 0.132 0.945 0.009 0.073 0.082 0.955
β̂1(0.7) 0.001 0.037 0.041 0.941 0.000 0.022 0.025 0.958
β̂2(0.7) 0.007 0.125 0.138 0.945 0.008 0.077 0.087 0.948

2.5 β̂1(0.3) 0.001 0.033 0.038 0.959 0.000 0.020 0.023 0.956
β̂2(0.3) 0.013 0.113 0.125 0.939 0.008 0.068 0.078 0.959
β̂1(0.4) 0.000 0.032 0.036 0.955 0.001 0.020 0.022 0.951
β̂2(0.4) 0.011 0.108 0.120 0.953 0.006 0.066 0.074 0.958
β̂1(0.5) 0.000 0.032 0.036 0.958 0.000 0.020 0.022 0.948
β̂2(0.5) 0.006 0.109 0.119 0.948 0.008 0.067 0.075 0.960
β̂1(0.6) 0.001 0.032 0.036 0.953 0.000 0.020 0.022 0.954
β̂2(0.6) 0.005 0.110 0.120 0.950 0.008 0.068 0.075 0.948
β̂1(0.7) 0.001 0.034 0.038 0.940 0.000 0.020 0.024 0.958
β̂2(0.7) 0.007 0.115 0.127 0.953 0.009 0.071 0.080 0.952

NOTES: SD represents the empirical standard deviation, SE is the standard error, and CP stands for the 95% coverage probability.

the initial follow-up time and insufficient samples at the end of
the study, the variance estimation and coverage probabilities at
τ = 0.2 and 0.8 are less satisfactory. Hence, quantile estimation
tends to be more reliable in the middle range of quantiles.

Furthermore, we compare our FCQR method with that of
Kato (2012) based on the same simulated dataset under the non-
censoring scenario. For the method of Kato (2012), we select the
five functional bases that give the smallest integrated absolute
error for the functional estimator. Figure 5 exhibits the func-
tional estimators at τ = 0.3, 0.5, 0.7 using the method of Kato
(2012), which clearly shows under-smoothness. To obtain more
reasonable estimators, we utilize the local regression method
(Chambers and Hastie 1992, chap. 8) with bandwidth 0.4 to
obtain the smoothed fitted curves and the corresponding confi-
dence intervals as shown in Figure 6. The bandwidth 0.4 is cho-
sen so that the resulted curves are sufficiently smooth with the
minimal loss of the integrated absolute error compared to the
original fitted curves in Figure 5. Table 6 shows that the baseline

effect estimation of Kato (2012) is slightly better than FCQR
under noncensoring scenarios in terms of bias. We also compute
the integrated absolute errors of the functional estimators over
1000 simulations, which yield 1.38 and 0.41 at τ = 0.5 for Kato’s
method and FCQR, respectively, demonstrating the superiority
of our proposed method.

6. Stroke Application: Time to Stroke Recurrence and
Blood Pressure Trajectory

Our motivating application is from a nation wide hospital-
based, prospective cohort study about ischemic stroke and tran-
sient ischemic attack patients, aiming at identifying functional
relationship between ambulatory blood pressure trajectories
and clinical outcomes in stroke patients. Stroke is the top killer
in China and the fifth leading killer in North America. Yearly, 15
million people suffer from stroke; 5 million of these people die,
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Table 3. Estimation results from 1000 simulations for β̂(τ ) = {β̂1(τ ), β̂2(τ )}T at different quantiles with σε = 0.2 and a censoring rate of 40%.

n = 200 n = 500

v β̂(τ ) BIAS SD SE CP BIAS SD SE CP

1 β̂1(0.3) 0.003 0.065 0.075 0.961 0.003 0.040 0.050 0.970
β̂2(0.3) 0.021 0.203 0.245 0.968 0.009 0.130 0.157 0.959
β̂1(0.4) 0.003 0.063 0.074 0.960 0.003 0.040 0.048 0.964
β̂2(0.4) 0.014 0.202 0.238 0.959 0.004 0.126 0.152 0.964
β̂1(0.5) 0.003 0.064 0.076 0.957 0.003 0.042 0.049 0.955
β̂2(0.5) 0.009 0.210 0.239 0.951 0.005 0.127 0.157 0.977
β̂1(0.6) 0.003 0.068 0.080 0.961 0.002 0.043 0.051 0.963
β̂2(0.6) 0.004 0.216 0.255 0.954 0.004 0.133 0.162 0.960
β̂1(0.7) 0.006 0.071 0.087 0.953 0.002 0.045 0.056 0.961
β̂2(0.7) 0.002 0.232 0.280 0.959 0.002 0.144 0.179 0.958

1.5 β̂1(0.3) 0.004 0.054 0.066 0.972 0.002 0.033 0.041 0.967
β̂2(0.3) 0.024 0.172 0.213 0.970 0.009 0.112 0.134 0.952
β̂1(0.4) 0.003 0.053 0.064 0.967 0.001 0.033 0.040 0.947
β̂2(0.4) 0.019 0.177 0.206 0.965 0.007 0.110 0.129 0.964
β̂1(0.5) 0.002 0.055 0.065 0.961 0.002 0.035 0.041 0.954
β̂2(0.5) 0.012 0.180 0.207 0.955 0.008 0.111 0.132 0.968
β̂1(0.6) 0.002 0.057 0.068 0.958 0.002 0.036 0.043 0.958
β̂2(0.6) 0.006 0.186 0.218 0.962 0.009 0.114 0.137 0.963
β̂1(0.7) 0.004 0.061 0.073 0.958 0.001 0.037 0.046 0.954
β̂2(0.7) 0.003 0.200 0.236 0.956 0.006 0.123 0.151 0.959

2 β̂1(0.3) 0.003 0.048 0.059 0.967 0.002 0.030 0.038 0.969
β̂2(0.3) 0.023 0.154 0.188 0.956 0.014 0.100 0.121 0.964
β̂1(0.4) 0.003 0.048 0.057 0.965 0.001 0.030 0.035 0.963
β̂2(0.4) 0.023 0.157 0.181 0.954 0.010 0.098 0.116 0.960
β̂1(0.5) 0.002 0.048 0.057 0.955 0.002 0.031 0.037 0.963
β̂2(0.5) 0.016 0.160 0.184 0.947 0.010 0.099 0.120 0.968
β̂1(0.6) 0.002 0.049 0.060 0.958 0.002 0.032 0.038 0.948
β̂2(0.6) 0.012 0.168 0.191 0.959 0.011 0.104 0.123 0.956
β̂1(0.7) 0.002 0.052 0.064 0.960 0.001 0.033 0.040 0.965
β̂2(0.7) 0.006 0.178 0.206 0.952 0.008 0.111 0.134 0.955

2.5 β̂1(0.3) 0.003 0.047 0.058 0.968 0.002 0.028 0.036 0.967
β̂2(0.3) 0.024 0.151 0.179 0.951 0.015 0.096 0.117 0.972
β̂1(0.4) 0.002 0.046 0.055 0.964 0.001 0.029 0.034 0.955
β̂2(0.4) 0.022 0.150 0.176 0.957 0.012 0.096 0.111 0.957
β̂1(0.5) 0.002 0.047 0.055 0.958 0.002 0.029 0.035 0.962
β̂2(0.5) 0.016 0.152 0.178 0.956 0.012 0.097 0.115 0.961
β̂1(0.6) 0.002 0.048 0.057 0.957 0.001 0.030 0.036 0.946
β̂2(0.6) 0.013 0.158 0.186 0.953 0.011 0.099 0.118 0.962
β̂1(0.7) 0.000 0.049 0.061 0.956 0.001 0.031 0.039 0.971
β̂2(0.7) 0.006 0.173 0.198 0.953 0.009 0.107 0.127 0.957

NOTES: SD represents the empirical standard deviation, SE is the standard error, and CP stands for the 95% coverage probability.

Table 4. Optimal dS based on the IGACV and IBIC criteria under different censoring rates over 500 simulations.

dS 4 5 6 7 8 4 5 6 7 8

0% censoring 10% censoring

IGACV 88 122 250 36 4 71 121 256 40 12
IBIC 330 102 67 1 0 316 112 72 0 0

20% censoring 40% censoring

IGACV 67 121 250 42 20 89 104 169 74 64
IBIC 288 124 85 3 0 218 135 127 18 2

another 5 million people suffer from long-term disability. The
data contain 24-hr ambulatory blood pressure measurements
and interesting clinical outcomes about 297 stroke patients.
The primary endpoint is the time to the composite stroke
recurrent event, including death, disability, or vascular events.
The censoring rate is 40%. Each patient’s SBP is measured every
15 min starting from 19:00 for 24 hr.

For the ith patient, we consider his/her minimal SBP as the
baseline covariate denoted as X1i, and the SBP trajectory minus
X1i as the functional covariate, denoted as Zi(s). We standardize
the logarithm of the survival time to stabilize the computation.

As shown in Table 7, we apply the IGACV and IBIC criteria to
select dS, respectively. The IGACV reaches the minimum value
at dS = 7, while IBIC does at dS = 4. Based on dS = 7,
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Figure 2. Estimated coefficient functions BT
r (s)γ̂ (0.5) with σε = 0.2, v = 2, and sample sizes 200 (top panels) and 500 (bottom panels), respectively. The red solid lines are

the true functions, the green long-dashed lines represent the estimated mean functions, the green dotted are the empirical confidence intervals, and the brown dot-dashed
lines are the bootstrap confidence intervals.

Table 5. Estimation results for β(τ ) based on 1000 simulations with n = 297 and σε = 0.2 under different censoring rates.

τ BIAS SD SE CP BIAS SD SE CP

0% censoring 10% censoring

0.2 0.018 0.179 0.202 0.972 0.019 0.180 0.203 0.966
0.3 0.012 0.167 0.187 0.961 0.011 0.168 0.189 0.959
0.4 0.012 0.157 0.177 0.962 0.013 0.160 0.182 0.957
0.5 0.011 0.158 0.180 0.953 0.009 0.162 0.182 0.955
0.6 0.007 0.164 0.181 0.941 0.005 0.168 0.188 0.945
0.7 0.009 0.173 0.193 0.951 0.007 0.182 0.202 0.950
0.8 0.016 0.188 0.209 0.964 0.012 0.204 0.231 0.962

20% censoring 40% censoring

0.2 0.017 0.182 0.205 0.966 0.014 0.186 0.217 0.965
0.3 0.012 0.170 0.192 0.960 0.008 0.178 0.205 0.959
0.4 0.011 0.162 0.183 0.955 0.006 0.173 0.197 0.959
0.5 0.012 0.165 0.188 0.959 0.002 0.177 0.207 0.955
0.6 0.007 0.175 0.197 0.951 0.009 0.195 0.231 0.959
0.7 0.001 0.192 0.215 0.951 0.018 0.231 0.285 0.967
0.8 0.003 0.222 0.261 0.974 0.046 0.366 0.489 0.989

Table 8 shows that there are significant negative effects of Z1i
at all considered quantiles, which suggests that hypertension is
an important risk factor for stroke.

Figure 7 displays the estimated α(s, τ) and the corresponding
95% pointwise bootstrap confidence intervals at different values
of τ . For the quantiles τ between 0.3 and 0.6, the magnitude
of the effect starts to decrease around 4:00, becomes nega-
tively significant around 8:00, and reaches the minimum at

10:30 on average. This trend coincides with the morning surge
phenomenon that often occurs when patients wake up in the
morning: the blood pressure increases quickly between 6:00 and
10:00. The results suggest that the early morning surge of the
blood pressure level has a significant effect on the disease risk.
Results for τ = 0.2, 0.7, 0.8 are presented in Appendix C.

The estimates in the panels of Figure 7 have an obvious
bimodal feature. We also comment on the first valley between
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Figure 3. Estimated coefficient functions BT
rS(s)γ̂ S(0.5) with dS = 6 under censoring rates 0% (top left), 10% (top right), 20% (bottom left), and 40% (bottom right),

respectively. The red solid lines represent the true functions, the green long-dashed lines are the estimated mean functions, the green dotted lines are the empirical
confidence intervals, and the brown dot-dashed lines are the bootstrap confidence intervals.

Table 6. Estimation results for β(τ ) based on 1000 simulations with n = 297 and
σε = 0.2 with complete data by the method in Kato (2012).

τ BIAS SSE SEE CP

0.2 0.004 0.177 0.197 0.970
0.3 0.002 0.169 0.180 0.959
0.4 0.006 0.159 0.173 0.960
0.5 0.005 0.157 0.172 0.955
0.6 0.008 0.166 0.175 0.959
0.7 0.006 0.177 0.183 0.944
0.8 0.004 0.189 0.196 0.956

Table 7. Selection of the optimal number of basis functions using the IGACV and
IBIC criteria, respectively, for the stroke data.

dS

Criterion 4 5 6 7 8

IGACV 0.35431 0.35557 0.35365 0.35329 0.35535
IBIC −0.61645 −0.60511 −0.60075 −0.59379 −0.58103

20:00 and 24:00 . During this time period, high blood pressure
increases the risk for the medical outcome, and the effect is
the strongest at the peak. This is consistent with the medical
knowledge that high blood pressure at night increases the stroke
risk.

For comparison, we also implement the method of Kato
(2012) on the 174 uncensored observations. The IGACV and
IBIC in Kato (2012) suggest using four functional bases to
approximate the functional coefficients. Table 8 shows the esti-
mated baseline coefficients, which are close to the estimates
from FCQR. Moreover, the functional estimates of Kato (2012)
in Figure 8 have similar patterns to those in Figure 7, but less
smooth. Because the sample size is smaller, the estimators of
Kato (2012) have wider confidence intervals, and in turn do not
reach the significance level.

To evaluate the adequacy of the FCQR, we follow Peng and
Huang (2008) to define

Kn(τ ) = n−1/2
n∑

i=1
q(X1i)Mi

{
QT(τ |Xi, Zi; β̂ , α̂)

}
,

where Mi is defined in (2), We choose q(Â·) as a quadratic func-
tion of baseline covariate, that is, q(X1i) = {(X1i−113.5)/16.8}2,
where 113.5 and 16.8 are the mean and standard deviation of
X1i. When Model (1) is correct, Kn(τ ) converges to a zero-mean
Gaussian process. We use the resampling approach in Peng and
Huang (2008) to approximate the null distribution of Kn(τ ) and
obtain the p-value of the supremum-based lack-of-fit test to be
0.815. It suggests that Model (1) provides a reasonably good fit
for the blood pressure data.
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Figure 4. Estimated coefficient function BT
rS(s)γ̂ S(τ ) with dS = 6 under a censoring rate of 40%. The red solid lines represent the true function, the green long-dashed

lines are the estimated mean function, the green dotted lines are the empirical confidence intervals, and the brown dot-dashed lines are the bootstrap confidence intervals.
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Figure 5. The functional coefficient estimators of Kato (2012) at τ = 0.3, 0.5, 0.7 with five functional bases under no censoring. The red solid lines represent the true
function, the green long-dashed lines are the estimated mean function, the green dotted lines are the empirical confidence intervals, and the brown dot-dashed lines are
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Table 8. Estimates β̂(τ ) and the 95% bootstrap confidence intervals (CIs) at different values of τ for the stroke data.

Method Quantile τ 0.3 0.4 0.5 0.6

FCQR −0.0086 −0.0074 −0.0073 −0.0068
95% CI (−0.0120, −0.0052) (−0.0101, −0.0046) (−0.0097, −0.0048) (−0.0081, −0.0055)

Kato (2012) −0.0142 −0.0110 −0.0095 −0.0088
95% CI (−0.0180, −0.0105) (−0.0127, −0.0092) (−0.0104, −0.0085) (−0.0093, −0.0083)

7. Conclusion

We consider a survival analysis setting with a functional
covariate, and develop a FCQR approach to study the time-
varying effect of the functional covariate on the survival times.

Our motivating stroke application is about identifying potential
time-varying effect of ambulatory blood pressure on time to
stroke recurrence. We use B-spline bases to approximate the
coefficient function of the functional covariate, and establish
consistency and asymptotic normality of the method. We
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Figure 6. The functional coefficient estimators of Kato (2012) at τ = 0.3, 0.5, 0.7 with five functional bases under no censoring after the local regression smoothing with
bandwidth 0.4. The red solid lines represent the true function, the green long-dashed lines are the estimated mean function, the green dotted lines are the empirical
confidence intervals, and the brown dot-dashed lines are the bootstrap confidence intervals.
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Figure 7. Estimated coefficient functions BT
rS(s)γ̂ S(τ ) using 297 observations with dS = 7. The solid lines represent BT

rS(s)γ̂ S(τ ) and shaded areas are the corresponding
95% pointwise bootstrap confidence intervals for τ = 0.3, 0.4, 0.5, and 0.6, respectively. The peak times are 8:00, 10:45, 11:15, 11:45 in the morning for τ = 0.3, 0.4, 0.5, 0.6,
respectively.

develop a flexible IGACV method to select the number of
knots in the B-spline approximation. We conduct extensive
simulations to study the finite sample properties of the
estimators and evaluate the performance of the IGACV knot
selection procedure. The application to the stroke study reveals
a couple of interesting findings that are of clinical interests.
First, the overall magnitude of the blood pressure trajectory has

a significant negative effect on stroke recurrence. Furthermore,
the estimated time-varying effect suggests that the morning
blood pressure surge (from 6:00 a.m. to 10:00 a.m.) indeed
significantly increases the risk of stroke recurrence, consistently
across multiple quantiles of the time-to-recurrence distribution.
This phenomenon has been noticed in the medical literature,
but has not been validated statistically before.
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Figure 8. Functional coefficient estimates from the Kato (2012) method with four functional bases given 174 complete observations. The estimators are smoothed using the
local regression method (Chambers and Hastie 1992) with bandwidth 0.4. The solid lines represent the estimated functional curves and shaded areas are the corresponding
95% pointwise bootstrap confidence intervals for τ = 0.3, 0.4, 0.5, and 0.6, respectively.

Although the quantile function QT(τ |X, Z, β , α) is mono-
tone, its estimator may not be. Should this happen, we
could adopt Peng and Huang’s (2008) martingale estimation
procedure to ensure the monotonicity of the estimator. In
special cases, when the covariates are nonnegative and one
can use nonnegative B-spline bases, a simpler adjustment can
be done. To be more specific, we can adjust the estimators
so that β̂l(τj) ≥ β̂l(τk) and γ̂l(τj) ≥ γ̂l(τk) for τj ≥ τk
to achieve the monotonicity of the quantile function, where
β̂l and γ̂l are the lth element of β̂ and γ̂ , respectively. Note
that the aforementioned adjustments are not necessary in our
numerical studies as the default estimates obtained are already
monotonic.

In practice, the discretization mechanism of Z(·) affects the
estimation results. To see the effect, in the real data, instead of
the default 15-min sampling interval, we sample the blood pres-
sure Z(·) every 30 min (resulting in 48 time points), and every
45 min (32 time points). We then implement our method on the
newly constructed covariates. Figure S.2 in the supplementary
materials shows that when Z(·) contains 48 time points, the
functional estimates are similar to those in Figure 7 with wider
confidence intervals. On the other hand, when Z(·) contains
only 32 time points (Figure S.3 in the supplementary materials),

the functional estimates fail to capture the time varying pattern
of the covariate effects. This phenomenon implies that one
needs a minimal number of time points to achieve estimation
consistency. To derive such a lower bound requires in-depth
analyses on the structure of the functional parameters, which is
out of the scope of the current research. Further research along
this line is needed.

Supplementary Materials

The supplementary material contains the proofs of the theoretical results
and additional numerical results.
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