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Abstract
We propose a class of phase II clinical trial designs with sequential stopping and adaptive
treatment allocation to evaluate treatment efficacy. Our work is based on two-arm (control and
experimental treatment) designs with binary endpoints. Our overall goal is to construct more
efficient and ethical randomized phase II trials by reducing the average sample sizes and
increasing the percentage of patients assigned to the better treatment arms of the trials. The
designs combine the Bayesian decision-theoretic sequential approach with adaptive randomization
procedures in order to achieve simultaneous goals of improved efficiency and ethics. The design
parameters represent the costs of different decisions, e.g., the decisions for stopping or continuing
the trials. The parameters enable us to incorporate the actual costs of the decisions in practice. The
proposed designs allow the clinical trials to stop early for either efficacy or futility. Furthermore,
the designs assign more patients to better treatment arms by applying adaptive randomization
procedures. We develop an algorithm based on the constrained backward induction and forward
simulation to implement the designs. The algorithm overcomes the computational difficulty of the
backward induction method, thereby making our approach practicable. The designs result in trials
with desirable operating characteristics under the simulated settings. Moreover, the designs are
robust with respect to the response rate of the control group.
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1. Introduction
Phase II clinical trials are designed to evaluate the efficacy of new treatments and find the
correct dose of new drugs, as well as to address potential safety problems. In this paper, we
focus on the goal of providing an initial test of the efficacy of new treatments. The purpose
is to screen out the inefficacious treatments before launching a large-scale phase III study.
Qualified trial designs should be able to achieve the prespecified goals stated in the
protocols, such as satisfying the type I and II error rate requirements. Additionally, designs
with smaller average sample size requirements and those that allow more patients to be
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assigned to the more efficacious treatment arms are desirable. In this paper, we evaluate
treatment efficacy by assessing a binary endpoint, e.g., response or nonresponse to a
treatment. Hence an efficacious treatment has a higher response rate. The performance of the
design is evaluated by assessing the operating characteristics of the trial, including the type I
error rate (α), statistical power (1-type II error rate (β), average sample size, and average
percentage of patients assigned to the better treatment arm.

Sequential stopping procedures that allow for interim decision making to achieve smaller
average sample sizes have been well developed for clinical trial designs [1]. In addition,
response-adaptive randomization (RAR) procedures have been proposed to allow more
patients to be treated with the more efficacious treatments [2]. We combine these two
procedures in order to achieve an overall goal of designing more efficient and ethical
randomized phase II trials by reducing the average sample size and increasing the
assignment of patients to the better treatment.

In the literature, sequential stopping and RAR procedures have been proposed under the
frequentist setting. The classical frequentist group sequential methods include the Pocock
method [3], the O’Brien and Fleming method [4], and the Lan and DeMets error spending
function method [5]. The frequentist methods define stopping boundaries for controlling the
overall type I error rate. By varying the boundary shape, the design can achieve different
average sample sizes, α, and 1 − β.

RAR procedures proposed under the frequentist setting include randomized play-the-winner,
randomized Pòlya urn, birth and death urn, drop-the-loser , sequential maximum likelihood,
and doubly-adaptive biased coin design (DBCD) methods. For comparing frequentist
methods with the proposed method, we apply the DBCD procedure because it allows the
choice of suitable tuning parameters to provide results that are comparable to those of the
other designs [2, 6].

Under the frequentist setting, the sequential stopping and RAR procedures are usually
applied separately because of complications from combining the data dependence structures,
which make the asymptotic properties difficult to justify. The frequentist methods have
additional deficiencies in such applications. The frequentist approach does not conform to
the likelihood principle, which implies that statistical inference should be a function of the
likelihood of the observed data only and should not depend on unobserved data under a
certain design.

For example, the p-value in the frequentist analysis is defined as the probability of obtaining
an event as or more extreme than the observed one under the null hypothesis. The more
extreme events are unobserved but are used for inference. Moreover, as mentioned above,
frequentist inferences are often based on asymptotic results and the specific assumed design.
Hence, they may not be valid if the trial conduct deviates from the design [7].

Parallel to the frequentist methods, Bayesian methods have been proposed for both
sequential stopping and adaptive randomization procedures. For recent reviews, see for
example [8] and [9].

Under the Bayesian setting, Lee and Liu [10] developed a sequential design based on the
predictive probability approach. They constructed stopping rules based on the predictive
probability, which corresponds to the probability of rejecting the null hypothesis at the end
of the study, providing the same trend as that observed continues. The trial is stopped if the
predictive probability exceeds a chosen efficacy cutoff value or is lower than a futility cutoff
value. By choosing the proper cutoff value, the design preserves the type I and II error rates
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and improves the trial efficiency. Additionally, the design is flexible and easy to implement.
It is also robust when the study conduct deviates from the original design.

Bayesian RAR procedures have also been discussed in the literature. Thall and Wathen
developed an adaptive allocation rule based on the posterior distributions of pi, where i = 1,
2, denote the response rates for treatment arm i. They defined the probability of allocation to
arm 2 as a function of Pr(p2 > p1/data)c, where c is a tuning parameter used to reduce the
variability across the allocation probabilities [11]. The resulting trials treat patients more
effectively by assigning more patients to the better treatment arm. We refer to this procedure
as the generalized W. Thompson’s (GWT) procedure in this paper because it generalizes the
method proposed by W. Thompson [12] by adding the tuning parameter c, as discussed by
Berry and Eick [13]. We adopt the GWT procedure under the Bayesian setting.

Compared with the frequentist methods, Bayesian methods are better alternatives for
constructing combined designs involving both sequential stopping and adaptive
randomization. This is because Bayesian inference relies on the posterior distributions of the
parameters, which automatically consider the dependence among the observations.

In order to avoid the limitations of the frequentist approach, and take advantage of
combining the sequential stopping and adaptive randomization procedures, we implement
our combined design through a Bayesian decision-theoretic approach. This method is based
on the Bayesian estimation procedure; therefore the estimation procedures are essentially
adaptive, and the final results reflect the utility of the clinical trial, which is more
meaningful. Moreover, the tuning parameters used in the method represent the costs of the
decisions, which signify a direct connection between the decision-making procedures and
the goals of the trial.

The Bayesian decision-theoretic sequential approach was described by Lewis and Berry
[14]. They defined a 0 − K terminal loss function and showed that by adjusting the cost
value K, the Bayesian decision–theoretic sequential designs result in smaller average sample
sizes, and hence are more efficient compared with the frequentist designs. The loss function
that is chosen is meaningful from the frequentist perspective. When K is a constant, it is
essentially the same as the frequentist hypothesis test [15].

Berry and Eick discussed Bayesian decision-theoretic response-adaptive randomization
designs [13]. They analyzed four adaptive allocation procedures under the Bayesian
decision-theoretic framework, and compared them with an equal randomization procedure.
The results show that the adaptive randomization designs allow patients to be treated more
effectively than the balanced designs.

The second goal of this paper is to develop a method to address the computational issues of
the Bayesian decision-theoretic approach. Traditionally, a Bayesian decision problem that
involves sequential decisions is solved by the backward induction method. This method is
computationally intensive and thus is not practically applicable. In order to reduce the
computational demands, we make two adjustments while implementing the design under the
Bayesian decision-theoretic framework. First, we limit our design goal to preserve the error
rates and minimize the required sample size under the prespecified frequentist or Bayesian
RAR procedures; i.e., we only apply the Bayesian decision-theoretic method to define the
sequential stopping rules, and the decision rules are based on the losses of error decisions
and enrollment costs. Second, we extend the constrained backward induction method
introduced by Mueller et al. [16, 17] to obtain reasonable yet suboptimal solutions for
Bayesian decision-theoretic problems. Further, we use the forward simulation method to
approximate the suboptimal solutions. As the exact solutions of Bayesian decision problems
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are not attainable, we evaluate our method by assessing the resulting operating
characteristics in simulated trials.

In Section 2, we formally define the Bayesian decision-theoretic sequential method, and
discuss how to incorporate an RAR procedure. In Section 3, we discuss the backward
induction algorithm and the forward simulation and constrained backward induction
methods. In Section 4, we show the simulation results and compare our designs with the
frequentist power family boundary-DBCD design introduced by Morgan and Coad [18]. In
Section 5, we provide our conclusions and discussions.

2. Bayesian decision-theoretic sequential and response-adaptive
randomization method

Lewis and Berry [14] introduced a framework of the Bayesian decision-theoretic method,
and illustrated its application to an animal study and clinical trials. Their simulation studies
showed that the average sample sizes under the Bayesian decision-theoretic framework are
smaller than those for trials using classical frequentist methods. The Bayesian decision-
theoretic method has been used in more recent clinical trials. Gausche et al. [19] applied a
Bayesian decision-theoretic method to evaluate the outcomes associated with the use of
endotracheal intubation in pediatric patients in out-of-hospital emergency settings. They
compared the effectiveness of two interventions: the use of only bag-valve-mask ventilation
versus that form of ventilation plus endotracheal intubation. They assessed the short-term
survival and neurological outcomes of the patients. The initial concern was that the two
treatments would have a large difference in efficacy, so interim monitoring was desired. As
the classical frequentist boundary method allows for relatively infrequent interim analyses,
Gausche et al. chose to use a Bayesian decision-theoretic method in their study. In another
example, Young et al. [20] applied the method to a clinical trial on the prophylactic use of
phenytoin to prevent early posttraumatic seizures in children who experience blunt head
trauma. Comparing phenytoin to a placebo, the Bayesian decision-theoretic method was
used to assess the probability of pediatric patients remaining free from early posttraumatic
seizures. Since Bayesian decision-theoretic designs are optimal with respect to the defined
utility functions, they perform better than other designs in maximizing the utility functions.
These two studies illustrate that the Bayesian decision-theoretic designs are easy to interpret.
Such studies motivate us to extend the use of Bayesian decision-theoretic approaches to
incorporate adaptive randomization and group sequential monitoring in clinical trials.

We apply a Bayesian decision-theoretic approach and an RAR procedure to define two-arm
designs with binary endpoints. Without loss of generality, we assume that the two arms are
the control (arm 1) and the experimental treatment (arm 2). We refer to the binary outcome
as response (1) or nonresponse (0) to the treatments. We focus on the difference between the
two response rates, δ = p2 − p1, where p1 and p2 are the response rates for arm 1 and arm 2,
respectively. The proposed design includes a preliminary first stage when 2neq patients are
equally randomized to arm 1 and arm 2. After this initialization, the trial enrolls one
additional patient sequentially at the ensuing stages until the sample size reaches the
maximum value N. At each stage, we apply a Bayesian decision-theoretic approach to
determine whether to continue the trial given the current state of the trial. If the decision is
to continue the study, we use the RAR procedures to allocate the next patient to one of the
treatments. The maximum number of analysis stages is T = N − 2neq + 1 under this setting.
We index the analysis stages by t = 1, … , T, and denote the sample size at time (stage) t for
arm i, i = 1, 2, by nti, where n11 = n12 = neq and nT1 + nT2 = N.
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2.1. Probability model
Let Δyti

denote the number of responses among mti

(cohort size at time t for treatment i) patients assigned to arm i at time t=1, … , T, and
assume

where pi is the true response rate of arm i, and the Δyti’s are assumed to be independent. In
our implementation we use only mti = 1 or 0 depending on whether treatment i is selected or
not. Generalization to different cohort sizes is straightforward.

Let  be the total number of responses (achieving a favorable clinical

response to the treatment) up to time t for arm i, and let  be the total number
of patients. With the assumption that xti = 0 if mti = 0, i.e., no patients are assigned to arm i
at stage t, we have

The prior for parameter pi is

where γ0i = (α0i, β0i) are the beta distribution parameters. The posterior of pi is f(pi|γti) =
beta(γti), with γti = (αti, βti) = (α0i + yti, β0i + nti − yti).Here yti is the realization of Yti, the
cumulative number of responses observed in arm i. The parameters are updated sequentially.
The posterior at stage t is the prior for the next stage.

In our study, we implement two response-adaptive randomization procedures. Following the
work of Thall and Wathen [11], we use the GWT procedure as the first allocation procedure
with a Bayesian decision-theoretic sequential approach. We assign patients to arm 2 with
probability proportional to the probability of arm 2 being superior raised to the power c.
Letting δ = p2 − p1, based on the posterior parameters, the allocation rate ψ1 to arm 2 is
defined as

(2.1.1)

where c is a tuning parameter to adjust the extent of imbalance of the allocation and the
variability of the allocation ratio across the trials [11].

Alternatively, we use the DBCD procedure under both the Bayesian decision-theoretic and
frequentist settings in order to compare the two approaches under the same adaptive
randomization scheme. The allocation procedure is defined by the allocation function
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(2.1.2)

where v is the currently observed allocation ratio, ρ is the target allocation ratio, and ξ is a
tuning parameter that adjusts the convergence rates of the allocation ratios to the targets. We
specify the target ratio on arm 2 to be

(2.1.3)

The choice of ρ has the aim of minimizing the expected number of treatment failures [21].
The value of ρ is generally unknown and can be estimated by plugging in the corresponding
estimators , , such as Bayesian posterior means or maximum likelihood estimators under
the Bayesian decision-theoretic and frequentist settings, respectively.

2.2. Decision-theoretic approach for clinical trials
Statistical decision-theoretic approaches can be applied to clinical trials to quantify various
objectives of the clinical trials and to obtain optimal designs to achieve the specified
objectives [12, 22]. In our setting, let St be the summary statistic based on the data Yt, which
represents the state of the trial at time t. The decision rule is a function d(St, t) whose value
is an action d to be taken, given the current state St. In general, we assume that St contains
sufficient information about the data for making decisions. See later for more details and
examples for the choice of St. In the sequential setting, the set of decision rules is referred to
as policy π for the decision process, where π = (d(S1, 1), d(S2, 2), … , d(ST, T)). Letting Π
denote the class of policies, the goal is to determine the action to take for each state by
selecting a policy π ∈ Π to minimize the expected total loss. The expected total losses are
the objective functions whose values rely on the distributions of the sample paths and the
costs of the decisions.

The choices of St vary with the underlying probability models. Under the beta-binomial
assumption, we use a value of St that is equal to the sufficient statistic that contains the
information about the number of patients who achieve a favorable clinical response to the
treatment and the total number of observations on each arm, i.e., St = (γti, i = 1,2). The
posterior parameter γti is a natural choice because it contains all the relevant information.
Note that under an equal randomization setting, a state is uniquely identified by a three-
dimensional summary statistic because the allocation of patients is equal between the two
arms. However, the adaptive randomization procedures enlarge the state space; therefore, in
order to uniquely represent a state, St must be four-dimensional. As a result, RAR
procedures increase computational complexity. We address the computational issues in the
next section.

According to the observed state, we make a decision of stopping for efficacy, stopping for
futility, or continuing the trial. It is convenient to describe the decisions as pairs d = (d1, d2),
including first a stopping decision d1 ∈ {Ds, Dc}, and then a terminal decision d2 ∈ {De,
Df}, in case we stop the trial. Here Ds and Dc represent the stopping and continuation
decisions, respectively, and De and Df represent the decisions of stopping for efficacy and
futility, respectively. Let Lπ(St) be the expected total loss that is incurred by using policy π
from stage t onwards, given the current state St. Its value depends on not only St but also the
distribution of the sample path after stage t. Similarly, let Ld,πt+1(St) denote the expected loss
under decision d at time t, assuming the use of policy πt+1 from t + 1 onward. When d1 = Ds,
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we drop t+1 from the subindex because it is irrelevant. When d1 = Dc, we drop d2 from the
notation because it is irrelevant. The optimal solution is the policy π* that minimizes the
expected total loss, i.e.,

and

where S0 is the initial state.

In the rest of this section, we define the transition probability, the losses of the decisions,
and the optimality equations. We will generically use ℓ(·) to denote the realized loss, and
L(·) to indicate the expected loss, after marginalizing with respect to some of the unknown
variables. We start by describing the context and specific notations.

2.2.1. Transition Probabilities—We refer to p(St+1|St, d(St)) as the transition probability
from the state St to St+1 under the action d(St). We divide the state space at time t into a
continuation space t and a stopping space ℱt.

When St = s ∈ ℱt, the transition probability p(St+1 = s|St = s, d(s)) = 1. The transition
probability is nontrivial only if St = s ∈ t. Therefore, we drop the action d(St) from the
conditioning subset in the notation, and write it as p(St+1|St).

The probability p(St+1|St) is characterized by the adaptive allocation rates and the posterior
predictive distribution for the number of responses among the additional Δni patients who
are allocated to each arm from the current to the next stages. Given St, St+1 takes four values,
depending on which arm is chosen for the next patient and whether or not the patient
responds to the treatment. Therefore, St+1 given St is determined by Δyt+1,i = (yt+1,i − yti), i =
1,2. For the beta (1,1) prior distribution for the response rate, conditional on Δni, the
posterior predictive distribution for the number of responses Δyt+1, i is a product of two beta-
binomial distributions, and can be simplified as a ratio of the gamma functions

(2.2.1)

For a fully sequential process, Δni = 1 or 0. Δyt+1, i = 1 if the (t + l)th patient is assigned to
arm i and responds to the treatment; 0 otherwise. In fact, conditioning on the treatment
selection, there is only one beta-binomial term left. To fully describe the probability of a
patient achieving a favorable clinical response to the treatment on arm i at stage t + 1, we
have to multiply the posterior predictive probability of the response rate on arm i by the
probability of assigning a patient to arm i, which is defined in equation (2.1.1) or (2.1.2).

2.2.2. Loss functions—We first consider the loss of the decision d2 ∈ (De, Df) when d1 =
Ds, i.e., the loss of the terminal decision upon stopping. We will use ℓ(d2, δ) for the loss of a
terminal decision without considering the accrual costs.

We adopt the 0 − K loss function from Lewis and Berry [14] for one-sided testing in our
study. Recall that the true response rates are denoted by pi, i = 1, 2, and their difference is δ
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= p2 − p1. Denoting the minimum difference for claiming efficacy by δ0(δ0 > 0), the
definition of the losses is based on a hypothesis test of H0: δ > 0 versus H1: δ > δ > δ0. The
zone between 0 and δ0 is considered to be an indifference region [14]. Using our notation
and terminology, the terminal error loss function can be written as

(2.2.2)

where ℓDf, ℓDe represent the loss of wrongly stopping for futility and efficacy, respectively.
According to the loss function, a loss would be incurred in the following two situations: we
conclude the treatment is efficacious when the true difference δ ≤ 0; and we conclude the
treatment is inefficacious when the true difference δ > δ0. There is no loss when the decision
is consistent with the true parameters, or when the true parameter values are in the
indifference region. According to the updated posterior distributions of the parameters, we
are able to obtain Pr(δ ≤ δ0|St) and Pr(δ > δ0|St), the probabilities of the error decisions, and
thus compute the expected losses of different actions, De, Df, given the observed data.

There are two main reasons to select the 0 − K loss function, as in equation (2.2.2). First, the
loss function is essentially the same as that defined for the standard hypothesis testing
framework when K1 = K2, thus it has a clear interpretation from the frequentist perspective.
Second, the cost assignments, K1 and K2, link directly with the error rates and can be
interpreted as the costs of the type II and type I errors, respectively. Cheng and Shen [23]
discussed the relationship between the α level and the value of K2/K1, and derived the upper
bound of the ratio to achieve a certain α level. This property helps us to adjust the tuning
parameters to control the error rates.

In the loss function (2.2.2) only terms for false decisions and for sampling cost appear. All
are related primarily to efficacy. In contrast the adaptive allocation rule (2.1.1) is also related
to ethical concerns by allocating more patients to better treatments. However, the two issues,
ethics and efficacy are intertwined. A more efficient design is more ethical by exposing
fewer patients to unnecessary risks.

The stopping losses and continuation losses are derived in appendix A.

3. Backward induction, constrained backward induction and forward
simulation

The optimal policy π* can be evaluated by an algorithm known as backward induction. In
this section we introduce this algorithm and an approximate implementation that avoids the
prohibitive computational cost of the full algorithm. As shown in equation (A.0.5), the
optimal solution for stage t is obtained by evaluating an expectation over the expected total
loss at the future time t + 1. Therefore, we should obtain the expected total loss at time t + 1
first. The standard way of implementing the procedure is by using the backward induction
algorithm. However, as discussed before, the adaptive randomization procedures enlarge the
state space, and therefore the usual backward induction algorithm becomes more
complicated. As a result, we develop an alternative algorithm based on the constrained
backward induction and forward simulation methods introduced by Mueller et al. [17]. The
new algorithm aims to obtain a suboptimal solution for the decision problems. In this
section, we review the backward induction algorithm, introduce the constrained backward
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induction and forward simulation methods, and implement the methods under the response-
adaptive randomization setting.

3.1. Backward induction
A decision problem is solvable by the backward induction algorithm only if there is a
maximum stage at which the decision process must be stopped. After identifying the
maximum stage, the procedure evaluates the expectations backward according to equations
(2.2.2) through (A.0.3). Assuming the maximum stage is T, we obtain

, where d2(ST) ∈ {De, Df} as the final decision at ST. We substitute

this result into the optimal equation (A.0.4) for t = T − 1, and calculate . The
optimal decision at t = T − 1 selects d1(St) from Dc, Ds first, then d2(St) from De, Df in the
case when the decision Ds was selected. The selections are based on minimizing the
expected losses of the actions. Then for t = T − 2, T − 3, …, 1, we apply the procedure
repeatedly to obtain the optimal decision for each St. The process is computationally
intensive because we have to evaluate over all possible values of St, t = 1, … , T. As the state
St is four-dimensional, the computational effort grows as O(4N) in time, and O(N4) in
storage, where N represents the maximum sample size of a trial.

Under the specified framework, we consider the following simplification to reduce
computational effort. Recall that the unit enrollment cost, and hence the minimal expected
continuation loss, is C. The trial will be stopped if the expected stopping loss at one state is
less than C. Therefore we eliminate the states whose expected stopping losses are less than
C before implementing the backward induction procedure.

3.2. Constrained backward induction
Brockwell and Kadane [24] and Mueller et al. [17] introduced the constrained backward
induction method as an alternative to the full backward induction method to obtain results.
The constrained backward induction method reduces the dimension of the state space and
allows backward induction to be conducted based on a lower-dimensional summary statistic

.

Noting the reduced dimension of  it is clear that the results obtained under the
constrained backward induction method might be suboptimal.

The goal is to choose a lower-dimensional statistic in order to reduce the computational
burden, while also maintaining a certain level of accuracy. Mueller et al. argued that good

choices of  should be no more than three-dimensional [17]. We discuss the selection of
summary statistics, forward simulation and constrained backward induction methods next.

3.3. Selecting the lower-dimensional summary statistics for constrained backward
induction

We select a lower-dimensional summary statistic  to best separate the continuation and
stopping regions of the states based on the results from a small size, full backward induction,
with the maximum sample size N = 100 and δ0 = 0.4. A sample size of N = 100 is chosen
such that the exact computations are still feasible. Inspection of the exact solutions under
different projections assists us in selecting the best summary statistic. We considered
alternative summary statistics (not shown) and eventually identified the projection shown in
Figure 1 as a reasonable separation. Figure 1 plots the posterior means versus the logarithms
of the posterior variances of the difference δ = p2 − p1 at certain stages. The middle regions
are the continuing zones. The regions above and below correspond to the stopping zones for
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efficacy and futility, respectively. Note that because we eliminate some stopping states by
using the forward evaluation steps before the backward induction, the stopping regions are
not fully displayed in the figure. Let νt, μt be the logarithm of the posterior variance, and the
posterior mean of the δ at stage t. Based on the results, we define the lower-dimensional

summary statistic  to partition the state space at time t. In other words, we

assume the suboptimal policy is a sequence of decisions  that depend on the data

only through the summary statistic . The dimension of the statistic  is
reduced compared with that of the original four-dimensional statistic St. It depends on the
posterior mean, variance of the difference δ, and analysis stage t.

The number of states increases along with increases in the sample size; hence, overlapping

of the states becomes serious at later stages. However, this is inevitable, since a value of 
does not correspond to a unique state represented by St, i.e., some closed states, St, may give

the same values of . This is the reason we claim our approach is suboptimal rather than
optimal. Nevertheless, this compromise is necessary in order to make the backward
induction algorithm practically feasible in a high-dimensional space.

3.4. Forward simulation
Upon selecting a summary statistic for constrained backward induction, we still face the
daunting task of evaluating the expectation over all the sample paths whose states are
represented by the reduced three-dimensional summary statistic.

Carlin et al. [25] introduced a Monte Carlo forward simulation method to evaluate the
expected losses for different decision rules at each state and choose the optimal one to
minimize the loss. This method replaces posterior integrals by their averages over selected,
simulated sample paths. The selection of specific simulations accounts for conditioning. For
example, the use of only simulations with St = s amounts to conditioning on St = s.We
implement this method in our study, and evaluate the desired expectation in equation (A.0.4)
by averaging the expected losses over the simulated sample paths.

Detailed implementations of the above methods are presented in Appendix B, and plots
based on the forward simulation and constrained backward induction method (which are
similar to those in Figure 1) are presented in Figure 2.

4. Simulation example
We implement the methods under the following settings. We assume a two-arm design, with
H0: p1 = p2, HA: p2 > p1 + δ0. The minimum difference in efficacy δ0 is 0.2, the maximum
sample size N = 300, and the equal randomization sample size is 2neq = 50. We simulate
10000 repetitions of the trials under the setting where p1 = p2 = 0.3 and p1 = 0.3, p2 = 0.5.
We also compare different methods under the settings where p1 ∈ B1 := {0.2, 0.3, 0.4, 0.5}
and p2 ∈ B2 := {{0.1, 0.2, … , 0.9} ∩ [p1, 1)}. We evaluate the performances of the designs
by comparing the resulting operating characteristics (OCs) of the trials. The OCs we
consider are the type I error rate (α, the target is 0.05); power (1 − β, the target is 0.80);

average sample size (ASN) under the null , and under the alternative ; the
expected percentages of patients on arm 2 (E(n2/n)), where n2 is the sample size on arm 2
and n is the total sample size up to the stopping time; and the average loss (AVL) over the
setting when p1 ∈ B1 and p2 ∈ B2. Note that the AVL is the sample realization of the
expected total losses, which is the expectation with respect to the prior distribution of the
parameters rather than with respect to any specific parameters. Therefore, we do not obtain
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the AVLs simply by taking the simulated results under only specific settings, but by
averaging the results across the simulation settings. We make comparisons of the OCs
among the Bayesian decision-theoretic, sequential, response-adaptive randomization (BAR)
designs and the frequentist, sequential, power family–DBCD (FAR) designs, as compared
by Morgan and Coad [18].

4.1. Bayesian decision-theoretic, sequential, response-adaptive randomization (BAR)
designs

Under the BAR design, the prior distributions are chosen to be beta(1, 1) for both arms. The
cost is C = 1 for recruiting one patient. We adjust the K1, K2 values to control the error rates,
and choose the exponent c in (2.1.1) between  and  to control the allocation rates.

4.2. Frequentist, sequential, power family–DBCD randomization (FAR) designs
The frequentist, sequential, power family method defines stopping rules through specifying
the lower and upper stopping boundaries as

(4.2.1)

where It is the information level at time t [18].

The design applies the DBCD adaptive procedure as the allocation procedure. The allocation
rates are defined by the functions in equations (2.1.2) and (2.1.3), where the  in equation
(2.1.3) is the maximum likelihood estimator.

We choose Δ = 0.5 or 0, and adjust the values of λ1 and λ2 based on the simulations to
achieve the target error rates. Note that when Δ = 0.5, the boundary resembles the Pocock
boundary, and when Δ = 0 it resembles the O’Brien-Fleming boundary. We use ξ in equation
(2.1.2) to adjust the convergent rate of the allocation ratio to the target rate. Usually it is
selected to be 2 [2]. However, because of early stopping, we require a higher convergent rate
and select ξ = 10 in this application.

In equation (4.2.1), the estimated information level is

where

Then the estimate of the standard Z statistic is

4.3. Results
We evaluate the designs by assessing their operating characteristics (OCs) through
simulation studies. First, we generate the settings to demonstrate the influence of K1 and K2
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on α, 1 − β and the average sample size (ASN), as shown in Table 1. Then we compare the
results from the BAR and FAR designs (see Table 2). In both tables, we assume p1 = p2 =
0.3 under the null hypothesis, and p1 = 0.3, p2 = 0.5 under the alternative hypothesis.
Additionally, we create plots with different p1, p2 values to examine the robustness of the
designs. As a reference, the non-sequential, fixed sample size, equal randomization design
requires a total sample size of 148 to achieve 80% power with a one-sided 5% type I error
rate.

To generate the data shown in Table 1, we choose an adaptive randomization procedure, the
generalized W. Thompsons (GWT) procedure with c = t/(2T), and vary the costs K1 and K2
in order to evaluate their effects on 1 − β and the ASN. Given K1 = 1000, we assign the type
I error rate cost K2 as 1500, 5000, and 8000 in BARa, BARb and BARc, respectively. These
adjustments reduce the type I error rate by directly increasing the type I error costs. Further,
the power is reduced because the type II error cost K1 is fixed, which means that the relative
importance of the type II error rate is less. Moreover, the ASN increases because the overall
error cost becomes larger compared with the fixed enrollment cost C.

In BARd, BARe and BARf, we fix the ratio of K1 and K2, but enlarge their values. The
results show that 1 − β and the ASN are both increased, but α is decreased. For the same
reason as stated previously, the increase in the ASN is due to an increase in the overall error
cost. The type I and II error rates are both reduced because of the increases in K1 and K2.
Since K1/K2 is fixed, the type I error rate does not change as much as when the value of K1/
K2 varies.

To sum up, there are two ways to control α, 1 − β and the ASN. First, we can fix the values
of K1 and K2 to reduce α substantially. But this also reduces 1 − β and increases the ASN
under the alternative hypothesis. Second, we can increase the values of K1andK2 while
keeping their ratio fixed. This reduces α and increases 1 − β; however, it increases the ASN
at the same time. This result shows that we can calibrate the K1andK2 values to achieve a
target α level, a specific value for 1 − β, or to control the size of the ASN. At the same time,
we have to carefully consider the trade-offs among the three.

Table 2 provides a comparison of the OCs among the BAR and FAR designs. We choose the
K1andK2 values that allow the trials to achieve the target α = 0.05 and 1 − β = 0.8 values.
BAR2 and BAR3 are the Bayesian decision–theoretic–GWT (BAR-GWT) designs with c =
t/(2T) or c = 1/2, respectively. BAR1 is the Bayesian decision–theoretic-DBCD design.
FAR1 and FAR2 are the frequentist power family-DBCD designs with ,
respectively. BEQ is the Bayesian decision–theoretic equal randomization design. FEQ1 and
FEQ2 are the frequentist equal randomization designs with , respectively. The
results show that the sample sizes required by all the designs listed in the table are less than
the sample size required by the non-sequential equal randomization design.

In order to make fair comparisons between the Bayesian decision-theoretic and frequentist
power family sequential approaches, we have to first eliminate the confounding effects from
the RAR procedures. Hence, we only compare the designs under similar adaptive
randomization settings. Additionally, because of the trade-offs between the ASN and type I
and II error rates, we are not able to make an overall conclusion based on merely one or two
components of the OCs. One suggestion is to maintain the same error rates for the designs
and compare their ASNs. However, that strategy does not reflect the relative importance of
the different components of the OCs. Instead, we compare the resulting average losses
(AVLs) from the Bayesian decision-theoretic perspective. Because the AVL takes into
account not only the ASN and error rates, but also their relative importance, it is a
reasonable score to use in ranking the methods.
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The first three rows in Table 2 show the results of the BAR1, FAR1 and FAR2 designs,
which apply the DBCD as the RAR procedure. Using the AVLs as comparison criteria,
BAR1 is the best of the three designs, as expected, since its aim is to minimize the AVL. It
has the smallest average loss (245.90) compared to those of the other two frequentist
methods (256.02 and 249.12) when the error costs are K1 = 1300andK2 = 2700. The results
also demonstrate the trade-offs among the OCs, as BAR1 has smaller ASN but lower power
than the FAR1 or FAR2 designs. The allocation of patients is slightly more balanced under
the BAR1 design compared to the FAR1 design. The lower PBA (number of patients
assigned to the better treatment arm) under BAR1 is due to its higher probability of stopping
a trial early, which limits the effects of the RAR procedure. The observation confirms that
the comparisons based on a single OC are not sufficient to draw a conclusion about the
overall performance of the design.

The middle section of Table 2 lists the results of a comparison of the BEQ, FEQ1 and FEQ2
designs. All three designs apply equal randomization throughout the trial. We implement the
BEQ design by using a full backward induction algorithm. This design, which aims to
minimize the AVL, has the smallest AVL and requires the lowest ASN under the alternative
hypothesis.

A comparison of the resulting AVLs shows that, under the same adaptive randomization
settings, the Bayesian decision-theoretic designs minimize the expected total losses, and
therefore are preferable over the frequentist designs. As a consequence, the BAR designs are
better than the FAR designs. Additionally, we favor the BAR design over the BEQ design
because the BAR designs have the advantage of assigning more patients to the better
treatment.

The bottom two rows of Table 2 list the results of a comparison of two additional robust
designs, BAR2 and BAR3, which we based on the GWT adaptive randomization procedure.

Both the BAR2 and BAR3 designs are better than the equal randomization designs at
attaining the required error rate, stopping the trials early at the cost of slightly increasing the
ASN, and decreasing the required power. The BAR2 design has larger power (0.845) and
smaller ASN (105.16), but smaller PBA (55% on the better arm) compared with those
respective numbers (0.815, 109.84, 62%) for the BAR3 design under the alternative
hypothesis. We conclude that the BAR2 design operated more efficiently, but the BAR3
design assigned more patients to the better treatment arm. The trade-off between trial
efficiency and treating individual patients better in a clinical trial always exists. The trial
investigators should choose the designs that accomplish the specific purposes of the trial.
For instance, if the trial requires a small ASN, the BAR2 design is desirable; whereas the
BAR3 design is desirable if the trial requires a higher PBA. Note that we give the AVLs of
the two designs just for reference. The values are not directly comparable because the cost
assignments are different for the designs.

In addition to the settings of fixed values for p1 and p2, we evaluate the performances of the
designs under settings of varying values where p1 ∈ B1, p2 ∈ B2. The tuning parameters are
chosen to satisfy the error rate requirements under the settings where p1 = 0.3 and p2 = 0.3
or 0.5. We use these settings to compare the BAR1, BAR2, BAR3, FAR1 and FAR2designs.

Figure 3 shows the power curves obtained from all the designs by fixing p1 at 0.2, 0.3, 0.4,
and 0.5, but varying δ = p2 − p1. The power curves increase as δ increases. The rates of
increase are greater in the indifference region compared with the rates in the region where p2
− p1 > δ0. The designs satisfy the type I and II error rate requirements under all settings. The
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results agree with those shown in the table, in which the BAR3 design has relatively less
power; whereas the power levels of the other designs are similar.

Figure 4 shows the average sample sizes (ASNs) under the different design settings. When
the p1 values are small (p1 = 0.2), the BAR2andBAR3 designs have relatively smaller ASNs
compared to those of the FAR1, FAR2, and BAR1 designs. Due to a more imbalanced
allocation, the BAR3 design generally has a larger ASN than the BAR2 design under the
alternative hypothesis. However, when p1 = 0.4,0.5, the BAR1 design outperforms all the
other designs. Overall, the BAR designs perform better than the FAR designs in every
setting.

Figure 5 shows the percentages of patients assigned to the better arm (PBA) for the different
designs. The BAR3 design assigns the largest proportion of patients to the better treatment
arm in most settings. The FAR1 design, which uses the O’Brien-Fleming group sequential
stopping boundary, also has a large PBA, especially under the alternative hypothesis as a
result of the large ASNs. By contrast, the FAR2 and BAR1 designs generally have the
smallest PBAs.

Figure 6 shows the standard deviations of the PBAs across the simulations. Based on these
values, the BAR1 design is the most stable, with the smallest standard deviation for the
allocation ratio in every setting. Contrarily, the BAR3 design generally has the largest
standard deviation, followed by the BAR2 design.

The comparisons above demonstrate that the BAR designs compare very favorably with the
FAR designs. Considering each component of the OCs, we find that the best design is
usually one of the BAR designs.

In most cases, p1, the response rate of the control treatment arm, is an unknown parameter.
To evaluate whether the designs are robust with respect to the values of p1, we plot each
component of the OCs across the p1 values from 0.2 to 0.5 against p2 in the supplemental
figures S1, S2 and S3.

For the ASNs, the performances of the BAR2, BAR3, FAR1 and FAR2 designs are relatively
invariant with respect to the changes in p1. However, the performance of the BAR1 design is
affected by the value of p1. The inconsistency in the results for the BAR1 design is due to a
combination of the Bayesian decision–theoretic sequential method and the DBCD adaptive
randomization procedures. Recall that when computing the expected continuation loss, we
consider the possible allocations of the next enrolled patient and their associated
probabilities. Therefore, the stopping rules rely on the choice of the allocation procedure.
Further, the allocation rates of the DBCD allocation procedure vary with the value of p1
because the target ratio is a function of p1. As a result, the stopping rules, and in turn the
average sample sizes of the trials, are indirectly influenced by the value of p1.

For the ASNs, the performances of the BAR2, BAR3, FAR1 and FAR2 designs are relatively
invariant with respect to the changes in p1. However, the performance of the BAR1 design is
affected by the value of p1. The inconsistency in the results for the BAR1 design is due to a
combination of the Bayesian decision–theoretic sequential method and the DBCD adaptive
randomization procedures. Recall that when computing the expected continuation loss, we
consider the possible allocations of the next enrolled patient and their associated
probabilities. Therefore, the stopping rules rely on the choice of the allocation procedure.
Further, the allocation rates of the DBCD allocation procedure vary with the value of p1
because the target ratio is a function of p1. As a result, the stopping rules, and in turn the
average sample sizes of the trials, are indirectly influenced by the value of p1.
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As for the PBAs and their standard deviations, when δ is large, the PBAs of all the designs
reduce to 0.5. This is because the trials in these settings would be terminated sooner
following an equal randomization procedure. The BAR1, FAR1 and FAR2 designs are not
robust with respect to p1 because the DBCD allocation rule is sensitive to changes in the
value of p1.

When comparing the operating characteristics as well as the robustness of the designs,
Figures 3 to 6 show that the BAR designs outperform the FAR designs based on the OCs.
The supplemental figures S1, S2 and S3 show that the GWT procedure surpasses the DBCD
procedure from the perspective of robustness.

The above results also confirm that none of the BAR designs is uniformly better than the
others based on every component of the OCs. Therefore, selecting among the BAR designs
should be based on the specific trial considerations.

With a goal of controlling the ASN of a trial, the BAR1 design is the best choice if the
control arm (arm 1) has a known high response rate, e.g., p1 = 0.4or0.5, as shown in Figure
4. This is because the resulting ASNs are the smallest among all the designs under these
settings. However, the BAR1 design is not robust with respect to p1. Further, when p1 is
small, e.g., p1 = 0.2or0.3, the ASNs of the BAR1 design are larger than those of the BAR2
and BAR3 designs. Therefore, if p1 is unknown or known to be small, we are in favor of
selecting the BAR2 design because it is robust and results in the smallest ASN when
compared to the BAR3, FAR1 and FAR2 designs in these settings.

When the goal is to improve the allocation of patients, it is desirable to have a design that
assigns more patients to the better arm on average, but has low variability of allocating
patients across the trial. Therefore, we consider both the PBA and the variability of PBA
across the trial. According to the results from Figures 5 and 6, we exclude the BAR1 design
in the first place. Although the BAR1 design has the smallest variability, it is the most
balanced design, and has limited effect on improving patient allocation in the trials. Further,
the BAR1 design is not robust with respect to p1. The BAR2andBAR3 designs perform
better than the BAR1 design because they are robust with respect to p1, and they are flexible,
allowing for different PBAs and levels of variability by adjusting the c value.

Similarly, the choice between the BAR2 and BAR3 designs depends on the specific trial
considerations. For example, if assigning more patients to the better treatment arm is the
goal, the BAR3 design is better, as shown in Figure 5. Conversely, if the ASN or the
variability of PBA are more important, the BAR2 design would be selected because it
requires a smaller sample size and has lower risk of assigning patients to the inferior
treatment arm, as shown in Figures 4 and 6.

5. Discussion
We propose a framework for clinical trial designs that combines a Bayesian decision–
theoretic sequential method and response-adaptive randomization procedures. The goal of
the design is to construct more efficient randomized phase II trials and assign more patients
to better treatments. We describe the Bayesian decision problem and introduce the
constrained backward induction and forward simulation methods to obtain reasonable and
computationally feasible but suboptimal solutions for the problem under the adaptive
randomization setting. The constrained backward induction method results in suboptimal

decision rules by using the lower-dimensional summary statistic  whose value might not
uniquely represent a state. As a result, we can not obtain optimal solutions, even under
extensive forward simulation. We can not compare solutions with an exact optimal solution
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or even an improved suboptimal solution for lack of computationally feasible
implementations. One could potentially compare the proposed designs with k-step look-
ahead methods, a method used to evaluate expected losses under the Bayesian decision-
theoretic setting [26].

In this study, we consider two-arm clinical trial designs with binary endpoints. We assume
that the two arms are independent, an assumption that may be violated in some situations.
Also, we use the average loss to compare the designs, acknowledging that this criterion
favors the Bayesian decision-theoretic solution which is designed to minimize average loss,
while the other methods do not.

Through simulation studies, we evaluate the performances of the designs by assessing their
operating characteristic (OCs) in various scenarios. We first fix the allocation procedure and
compare the average sample size and error rates between the Bayesian decision–theoretic
and frequentist sequential approaches. We use the average loss as a weighted score of the
average sample size and error rates to give an overall assessment of the performance of the
designs. The results show that the Bayesian decision–theoretic approach results in a smaller
average loss for the trial, as expected.

In terms of the average sample size, assignment of patients to the better treatment arm, and
variability of patient assignment across the trial, our evaluations under different settings
show that the BAR designs outperform the FAR designs in every component of the OCs.
Further, the designs that use the GWT allocation procedures, the BAR2andBAR3 designs,
are more robust.

The results are favorable for the proposed BAR designs compared to the FAR designs.
However, none of the BAR designs is uniformly better than the others. Therefore, the choice
among the BAR designs should depend on the specific trial considerations. Moreover, the
GWT procedure is more robust than the DBCD allocation procedures. Further, the BAR
designs using the GWT procedure, the BAR2 and BAR3 designs, are amendable in order to
achieve different PBAs and associated variables. Investigators can obtain a desirable BAR-
GWT design by choosing a proper value of the parameter c.

The proposed method can be extended to design a trial with survival time as the endpoint. In
this case, we have to specify the survival time distribution and carefully choose the summary
statistic for the decision-making procedure. Further, our method could be extended to design
a multi-arm clinical trial. Since the state space will be enlarged by considering multiple
arms, we have to find another low-dimensional summary statistic. A higher-dimensional
grid is necessary to evaluate the expected continuation losses. This may be a challenging
task, but is feasible in practice using the forward simulation method.

The designs and evaluation procedures are implemented in R programming. The R code is
available upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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A. The derivation of stopping and continuation losses

Terminal decision
According to the loss function and the probabilities of making erroneous decisions, we write
the expected loss of decisions Df,De as

(A.0.1)

The probabilities of making erroneous decisions are based on the posterior probabilities of
the difference in response rates. We can evaluate the value of Pr(δ > δ0|St) as

where B(·) is the incomplete beta function. These values are computed based on the
posterior parameters αti, βti, i = 1,2. In order to obtain the optimal solution for the decision
problem, we choose the decision rule that selects the action with the smallest expected loss
between De and Df given the current state. Therefore, the terminal loss under the optimal
decision  is

(A.0.2)

The expectation is taken with respect to the unknown parameter δ in equation (2.2.2).

Loss of trial continuation
To obtain the loss associated with continuing the trial after stage t, we have to consider the
cost of continuing to accrue patients, and the possible expected losses characterized by St+1
after enrolling the patients. We assume only one patient is enrolled at each stage; thus the
cost of continued accrual for one stage is the unit cost C of enrolling one patient. Without
loss of generality, herein we set C = 1 because only the relative magnitude of the error costs
and the cost of recruiting one additional patient matter.

Under the policy π, the loss of continuation LDc is

(A.0.3)

where

(A.0.4)

and where the summation in equation (A.0.4) is over the state space for St+1. The equation
shows that we can obtain the expected continuation loss at stage t once we have knowledge
about the expected total loss at stage t + 1. The recursive equation gives the rationality of
using the backward induction technique to evaluate the expectations.
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Optimality equation
The optimal policy is π* = (d*(S1), d*(S2), … , d*(ST)), the collection of optimal decisions
at each stage. To simplify the notation, we write πt = d(St, t) and , where

. We write the optimal programming equation as

(A.0.5)

The optimal decision solution π* is a sequence whose elements satisfy equation (A.0.5) at
any time t [27].

B. The implementation of the forward simulation and constrained backward
induction methods

Implementation of forward simulation and constrained backward induction
The forward simulation and constrained backward induction methods are based on the
following assumptions. First, with intensive simulations, we are able to generate the sample
paths with moderate and high occurrence probabilities. This ensures that the sample average
can well approximate the true expectation, as the samples with low occurrence probabilities
contribute little when computing the expectations. Second, the closeness of the observations

at each analysis stage can be defined by the distance between . Then, we

can create the grid at each stage by the quantiles of . The observations that are close to
each other are considered to be in the same group; i.e., we assume the observations that fall
into the same grid share the same future outcomes. As a result, the constrained backward
induction is conducted on the unit of a grid rather than the single observation. This reduces
the computational complexity substantially.

Implementation of forward simulation
We generate M = 20000 simulated sample paths. For the kth sample path, we first simulate
hypothetical response rates θk = (p1k, p2k) from the prior, and simulate the observations ytk =
(y1k, … , yTk) based on the assumed sampling model p(ytk|θk). According to the current
simulated observations, we assign the new patients to the treatment arms by the chosen
allocation rules. By doing this, we generate an extensive list of hypothetical trial histories.
Given each realization in a sample path, we update the posterior parameters accordingly. We

create a grid on , t = 1, … , T, k = 1, … M at each analysis stage
according to the simulated quantiles of (log(νtk), μtk), k = 1, … , M, where (log(νtk), μtk) are
the logarithm of the posterior variances and means of the difference of the response rates at
time t in the kth simulated sample path. Note that the simulated sample paths depend on the
response adaptive randomization procedures. Therefore, we fix the allocation rules when
performing the forward simulation.

The resulting plots, shown in Figure 2, have clear patterns. Hence, we believe M = 20000
simulated sample paths are more than enough. The patterns of the plots are invariant with
the analysis stages. Therefore, we conclude that the choice of M is independent of the
maximum sample size N. This graphical heuristic method can be used in practice to check
whether the simulated sample size is large enough. We do not typically need to continue to
generate samples when the patterns of the stopping and continuation regions are clear.
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Implementation of constrained backward induction
We implement backward induction on the state space represented by , which is

constrained to be three-dimensional. Let  be the realization of , and Ath be the subset of
1, … , M (M is the simulation time) created according to the quantiles of (log(νtk), μtk). At
each stage, we can identify into which grid , k = 1, … , M falls. We obtain Mth = |Ath| as
the number of sstk that falls in grid Ath.

As shown before, we start the constrained backward induction procedure from the final
stage. Assuming the maximum analysis stage of a trial is T, we obtain the expected stopping

loss for every simulated scenario  at this stage. We take the average of the expected
stopping loss over the scenarios with index k ∈ Ath as the expected stopping loss of the grid
h, i.e., for the hth grid at analysis stage T, we compute the expected stopping loss given

 where k ∈ ATh as

The procedure then goes backward. When  where k ∈ Ath at stage t, t < T, we
compute the expected stopping loss as

(B.0.6)

Note that we apply equations (2.2.2) and (A.0.1) without changes for computing the
expected stopping losses of the decision d2 ∈ {De, Df}. In other words, the four-dimensional

state St is used for calculating the loss of d2 for each scenario; whereas  is used to
determine the grid into which the current state falls.

The expected continuation loss of a sample path k, k = 1, … , M at time t is the unit accrual
cost C plus the expectation of the expected total loss of the realization in the same path at
time t + 1. We average the expected continuation losses over the index set Ath to obtain the

expected continuation loss of grid h. Hence, the loss of continuation given  where k
∈ Ath is computed as

(B.0.7)

Equations (B.0.6) and (B.0.7) show that the scenarios within a grid assume the same
expected losses. We compare the resulting expected continuation loss and stopping loss for
each grid, and choose the decision  between stopping and continuing to minimize the loss
of the grid.

We consider this procedure to be valid because equation (B.0.7) is well defined as the
expected losses of the scenarios at stage t + 1 are obtained by time t. In addition, the method
is efficient because we use replications of the simulated sample paths to approximate the
expected continuation loss rather than exactly evaluating the expected losses over all the
possible outcomes that follow a state. Using this strategy, we only have to evaluate a fixed
M number of scenarios for each stage. This strategy avoids rapid increases in the number of
scenarios, thereby making our approach computationally feasible. Note that for each state,
the intensive simulation provides the numbers of different future realizations for a state that
have high probability of occurrence and are thus adequate for a good approximation. This
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procedure may miss some distant future realizations whose occurrence probabilities are
small. However, after weighting by the occurrence probabilities, the contributions of these
scenarios to the expected losses are negligible, and therefore have little influence on the final
results.

Since our summary statistics are three-dimensional, we create separated grids instead of
using a single grid for every stage, as shown in the application of a two-dimensional statistic
by Mueller et al. [17]. Assuming the simulated dataset contains almost all of the possible

outcomes of , we use quantiles of μt and log(νt) to create an R × Q grid for the stage t, t =
1, … , T. We plot the forward simulation and constrained backward induction results for
several stages in Figure 2 when K1/K2 = 1300/2700, and M = 20000. After observing the
range of μt and log(νt) and the densities of the points, we decide to choose R = Q= 30. This
produces grids with a horizontal interval length of around 0.06-0.1 and a vertical interval
length of 0.06. We also try different R and Q values, ranging from 20–30. They lead to
similar results. In practice, the grids can be chosen by observing the results from the forward
simulation procedures. In principle, the chosen grid should be fine enough to distinguish the
realizations with large differences, and each grid should be wide enough to contain
sufficient samples.

During the trial, at stage t, we compute the posterior mean  and log variance  based
on the realized observations, and find the grid into which it falls. We then make a decision
based on the suboptimal decision for the grid. Problems occurs when the observed posterior
log variance  exceeds the maximum or minimum values in the simulated dataset at
stage t. We use linear predictions to address this issue. According to the grid points on the
horizontal line (on log(νt)), denoted by vqt, q = 1, … , Q, we identify, in each interval (νqt,
ν(q+1)t), the minimum (maximum) value of μt in the upper (lower) stopping regions and the
corresponding values of log(νt) as the upper (lower) critical points denoted by

. Then, by using the method of least squares, we form upper
and lower linear boundaries at each stage, which are the linear functions of log(νt) denoted
by fu, fl. Once an observed value of  falls into a grid range, we compare the value of
this  with the boundaries  to make the decision to stop or
continue the trial.
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Figure 1.
Backward induction results: middle region–continuing region; lower region –stopping for
futility; upper region –stopping for efficacy The results of exact backward induction. The
results are based on the four-dimensional state space; the expected losses are calculated by
taking into account all future possible outcomes. The axes represent the posterior means and
logarithm of the posterior variances of the difference of the response rates
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Figure 2.
Backward induction results: middle region–continuing region; lower region–stopping for
futility; upper region–stopping for efficacy The results of the forward simulation and
constrained backward induction method. The results are based on the simulated sample
paths and the lowerdimensional state space. The axes represent the posterior means and
logarithm of posterior variances of the difference of the response rates
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Figure 3.
Comparison of statistical powers.
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Figure 4.
Comparisons of average sample sizes (ASNs).
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Figure 5.
Percentages of patients assigned to the better treatment arm.
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Figure 6.
Standard deviation of allocation ratio.
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Table 1

Comparison of the operating characteristics of BAR designs with different costs K1, K2 and c = t/2T. p1 = p2 =
0.3 under the null and p1 = 0.3, p2 = 0.5 under the alternative. Type I error rate (α), average sample size under

the null hypothesis , power (1 – β), average sample size under the alternative hypothesis , expected
number of patients on arm2 (E(n2/n)) are recorded. The results are from 10,000 simulation runs.

Operating Characteristics

Under the null Under the alternative

Design K1/K2 α n
‒
α E(n2/n) 1 – β n

‒
β E(n2/n)

BARa 1000/1500 0.077 76.08 0.51 0.853 86.19 0.52

BARb 1000/5000 0.041 77.03 0.51 0.813 109.68 0.56

BARc 1000/8000 0.031 77.24 0.52 0.800 119.98 0.58

BARd 500/1500 0.064 65.84 0.51 0.779 79.21 0.52

BARe 1000/3000 0.053 77.11 0.51 0.830 100.42 0.54

BARf 2000/6000 0.043 90.33 0.52 0.875 122.76 0.57
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