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Summary. Motivated by the recent acquired immune deficiency syndrome clinical trial study
A5175, we propose a semiparametric framework to describe time-to-event data, where only the
dependence of the mean and variance of the time on the covariates are specified through a
restricted moment model.We use a second-order semiparametric efficient score combined with
a non-parametric imputation device for estimation. Compared with an imputed weighted least
squares method, the approach proposed improves the efficiency of the parameter estimation
whenever the third moment of the error distribution is non-zero. We compare the method with a
parametric survival regression method in the A5175 study data analysis. In the data analysis,
the method proposed shows a better fit to the data with smaller mean-squared residuals. In
summary, this work provides a semiparametric framework in modelling and estimation of survival
data. The framework has wide applications in data analysis.
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1. Introduction

A new Acquired Immune Deficiency Syndrome Clinical Trials Group study, A5175, was recently
conducted to evaluate several antiretroviral regimens in diverse populations. One primary goal
of the study is to investigate the safety of these regimens to maximize the efficiency of the
antiretroviral delivery in various areas (Campbell et al., 2012). The primary safety end point of
the study is a patient’s time to one of the following three early adverse reactions: onset of a grade
3 or higher severity sign, a grade 3 or higher laboratory abnormality and a change of the initial
treatment due to toxicity of the treatment. A patient’s event was considered to be censored if
he or she did not meet the primary end point criteria at the end of the study or at the final
medication dose. In addition, the study also collected patients’ CD4 cell counts at the baseline
and then at weeks 8, 24, 72 and 96. Compared with the primary safety end point, the CD4 cell
counts information was obtained relatively easily in a shorter period of time. Although the CD4
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cell counts information is primarily used in inferring the treatment efficacy (Campbell et al.,
2012), it is also related to the safety of the antiretroviral regimens. For example, Hirsch (2008)
showed that using the same antiretroviral regimen at a higher CD4 cell count level would lower
the risk of toxicities. Thus, it is natural to expect that an analysis on the primary safety end
point would be more efficient if the short-term information on CD4 cell counts can be included.
This motivates us to develop methods to analyse the relationship between CD4 cell counts and
the primary safety end point, with the goal of ameliorating the existing post-trial data analysis
procedures. In addition, we also explore the usage of the proposed methods in the clinical trial
design stages to improve trial efficiency.

In the A5175 study, safety of a treatment is described by time to adverse events, and all the
subsequent decisions are made on the basis of the inference on the event time. This motivates
us to model the time to the primary safety end point directly as a function of the covariates.
In contrast, traditional time-to-event models such as the Cox proportional hazard model focus
on evaluating the covariate effect on the risk of disease and do not provide direct inference on
the event time. Our preliminary analysis (Section 3.3) on the A5175 study data shows that both
the mean and the variance of the primary safety end point depend on the short-term CD4 cell
counts. To capture this relationship while remaining flexible, we use a semiparametric second-
order restricted moment model to specify the mean and variance structures of the primary
safety end point while leaving all other aspects of the model unspecified. The model has the
characteristics of capturing the central structure while remaining flexible in non-crucial parts
of the model. By modelling the variance in addition to the mean, the second-order restricted
moment model enriches the structure of the classical restricted moment model.

To obtain accurate parameter estimation and to perform proper inference on time to the
primary safety end point, we devise a semiparametric estimation procedure for the second-
order restricted moment model used in fitting the A5175 data. To our best knowledge, such
modelling and estimation approaches have not been considered in survival models. In classical
regression models, parameter estimation is often performed by using the ordinary least squares
method, which is efficient when the errors are normally distributed (Gallant, 2009). However,
the additional variance structures in the A5175 study data imply that the ordinary least squares
estimators may not be optimal. Under the complete-data settings, Wang and Leblanc (2008)
proposed a second-order least squares method when the error variances are constant. The
method was later generalized to covariate-dependent error variances and shown to minimize
the variances of the estimators (Kim and Ma, 2012).

The A5175 study data are further subject to censoring. This prevents the direct application
of the methods that were described above because, without fully specifying the event time dis-
tribution, the score functions of the censored subjects are difficult to obtain. In a completely
different context, Wang et al. (2012) proposed a non-parametric score imputation method to
cope with censoring when covariates are discrete. The non-parametric score imputation method
often performs competitively compared with the optimal augmented inverse probability weight-
ing method in terms of estimation variability in finite samples (Wang et al., 2012), whereas the
former has a more intuitive form and is more interpretable. This inspires us to examine the non-
parametric imputation strategy and to extend the method to incorporate continuous covariates
(CD4 cell counts in the A5175 study data). We then generalize the semiparametric estima-
tion method of Kim and Ma (2012) to handle survival data. We develop an imputation-based
semiparametric efficient estimator for the second-order restricted moment model, RMM2-ISE,
which combines the non-parametric score imputation with the second-order least squares score
function that was introduced in Kim and Ma (2012). We derive its asymptotic estimation vari-
ance and establish its root n consistency and asymptotic normality. We evaluate the finite sample
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properties of RMM2-ISE. We further compare the RMM2-ISE estimation procedure with a
simpler method, which we name the imputed weighted least squares (IWLS) method, through
simulation studies. We developed IWLS here to combine non-parametric score imputation
and weighted least squares score functions. A similar idea was used in Lipsitz et al. (1999) to
handle missing covariates. Moreover, we apply the RMM2-ISE-method to analyse the A5175
study data. The RMM2-ISE-method also shows better data fitting compared with the method
combining the accelerated failure time (AFT) Weibull model and maximized likelihood (ML)
estimation. Throughout the paper, we choose the Weibull survival time model to fit the data
for comparisons because it is sufficiently flexible to accommodate increasing, decreasing and
constant hazard rates (Klein and Moeschberger, 2010).

The rest of the paper is structured as follows. In Section 2, we describe the second-order
restricted moment model and introduce a second-order semiparametric efficient estimator. We
also describe the non-parametric imputation method for treating censored observations and
study its properties. In Section 3, we analyse the A5175 study data by using our modelling and
estimation methods, after examining them via simulation studies. We conclude the paper with
a discussion in Section 4 and relegate all the technical proofs to the on-line supplementary
document.

2. Modelling and methodological development

2.1. Second-order restricted moment model in complete data
We first introduce the second-order restricted moment model under the general complete-data
settings; we then define the specific model for the A5175 study data. Let Yi and Wi denote the
independently and identically distributed response random variables and covariates respectively.
In our paper, Yi is the survival time on the logarithmic scale. Let β and γ denote the parameters
that are associated with the mean and the variance respectively. A general second-order restricted
moment model has the form

g.Yi/=m.Wi, β/+ ξi, .1/

where g.·/ is a known link function, E.ξi|Wi/ = 0 and E.ξ2
i |Wi/ = σ2.Wi, γ/. Here m.·/ is a

generic function known up to the parameter β and σ2.·/ is a generic positive function known
up to the parameter γ. Differently from the usual regression models, the error variation is also
specified as a function of Wi.

Based on Kim and Ma (2012), the semiparametric efficient estimator can be obtained by
solving estimating equations that are formed by the sum of the efficient score functions

Sβ,eff .Wi, Yi/= @m.Wi, β/

@β

{
ξi

σ2.Wi, γ/
− E.ξ3

i |Wi/Di

σ2.Wi, γ/E.D2
i |Wi/

}

Sγ,eff .Wi, Yi/= Di

E.D2
i |Wi/

@σ2.Wi, γ/

@γ
,

.2/

where

Di = ξ2
i −σ2.Wi, γ/−E.ξ3

i |Wi/ξi=σ
2.Wi, γ/:

When the third moment E.ξ3
i |Wi/ = 0, the score function for β is the same as that for the

ordinary least squares estimator. This fact shows that, in estimating β, the resulting estimator
is at least as efficient, and is often more efficient, compared with the ordinary least squares
estimator. Further, if E.ξ3

i |Wi/ �=0, the resulting estimator gains efficiency by making use of the
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additional variance structure. We point out that, although the true third and fourth moments
of ξi conditional on Wi are needed in expression (2), in practice, their parametrically or non-
parametrically estimated versions can be plugged in and the resulting estimation efficiency of
β and γ will not be affected (Kim and Ma, 2012). In Section 3, we provide specific estimators
of E.ξ3

i |Wi/ and E.ξ4
i |Wi/ both parametrically and non-parametrically, using no additional

data.
The above efficient score functions are derived under the complete-data setting. In the next

section, we modify the efficient score functions and introduce the estimating equations for
censored survival data. We further derive the statistical properties of the resulting estimators.

2.2. The imputation estimator
The A5175 study data are complicated by censoring. More specifically, let Ti and Ci be the
primary safety end point and the censoring time for the ith subject on the logarithmic scale.
We observe only Xi = min.Ti, Ci/ and the censoring indicator Δi = I.Ti � Ci/, for i = 1, : : : , n.
A widely accepted method for handling censoring is the likelihood-based approach, such as
that used for the AFT–Weibull model. Because of the full parameterization of the survival
time distribution in AFT–Weibull models, the probability that an event happens after a certain
time can be expressed as a function of a finite dimensional parameter. The parameter estima-
tion can then be performed through maximizing the likelihood of the observed data. Although
this method has long been known, its application is limited because of its non-robustness, in
that, as soon as the true population distribution deviates from the AFT–Weibull model, the
method leads to misleading results. In this paper, we introduce a non-parametric score impu-
tation method to deal with the censored primary safety end points, which makes much fewer
assumptions and is more robust. The method extends the approach of Wang et al. (2012) un-
der the discrete setting by including the CD4 cell counts as a continuous covariate. Combined
with the second-order restricted moment model and the semiparametric efficient score equa-
tions, the method yields consistent estimators as long as the first two moment assumptions are
satisfied.

Throughout the text, we use capital letters to denote a random variable and small letters
to denote the corresponding realizations. For identifiability and simplicity, we assume that
the censoring distribution is independent of the survival time and the covariates. We consider
the efficient score function Sθ,eff .wi, ti/= .Sβ,eff .wi, ti/

T, Sγ,eff .wi, ti/
T/T for the parameter θ=

.βT, γT/T, where wi and ti are the values of the CD4 counts and the primary safety end point
respectively. We define the RMM2-ISE estimating equation under the survival settings as

n∑
i=1

δiSθ,eff .wi, ti/+ .1− δi/E{Sθ,eff .wi, Ti/|Ti >Xi, Wi =wi, Xi =xi}, .3/

where δi is the realization of Δi. Thus, if a subject has an observed primary safety end point, we
use the original efficient score function. However, if a subject is censored, we use the expected
value of the score function conditional on the CD4 cell counts, given that no adverse reaction
has happened before the censoring time.

Without specifying the population distribution of the primary safety end point, we evaluate
the conditional expectation in model (3) non-parametrically via kernel methods, which has good
asymptotic properties with a properly chosen bandwidth (Devroye, 1981). We define

Qθ,i.wi, xi/=E{Sθ,eff .wi, Ti/|Ti >Xi, Wi =wi, Xi =xi}
=E{Sθ,eff .wi, Ti/|Ti >xi, Wi =wi, Ci =xi}
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= E{Sθ,eff .wi, Ti/I.Ti >xi/|Wi =wi, Ci =xi}
E{I.Ti >xi/|Wi =wi, Ci =xi}

= E{Sθ,eff .wi, Ti/I.Ti >xi/|Wi =wi}
E{I.Ti >xi/|Wi =wi} ,

where the last equality is because Ci and Ti are independent given Wi. If Tis are observed,
we would simply use non-parametric kernel regressions to approximate the two conditional
expectations above. However, because Tis are observed only when Δi = 1, we further need to
modify the two averages with the inverse-probability-weighted averages, where the weights are
the probability of censoring time after event time, i.e. the survival function of the censoring
process G.·|W/=G.·/ under the assumption that censoring is independent of the covariate. The
kernel estimator of Q̂θ,i is thus written as

Q̂θ,i.wi, xi/=

n∑
j=1

δjSθ,eff .wj, xj/I.xj >xi/Kh.wj −wi/=Ĝ.xj/

n∑
j=1

δjI.xj >xi/Kh.wj −wi/=Ĝ.xj/

, .4/

where

Ĝ.tj/≡ ∏
xi�tj

{
1− .1−Δi/

n∑
k=1

I.xk �xi/

}

is the Kaplan–Meier estimator for the survival function of the censoring distribution G.·/, and
Kh.·/≡K.·=h/=h, where K is a kernel function and h is a bandwidth. When h→0, the imputed
score functions reduce to those introduced in Wang et al. (2012) in the discrete covariate settings.

Specifically, to obtain Q̂θ,i.wi, xi/, we use the product limit estimator to estimate G. We
choose the Gaussian kernel with bandwidth h=n−2=15hs, where hs =1:06σn−1=5 is Silverman’s
rule-of-thumb bandwidth (Silverman (1986), page 45) and σ is the standard deviation of Wi.
Because hs has order n−1=5, the proposed bandwidth h satisfies nh4 → 0 and nh2 →∞ when
n→∞. Because of the indicators δj and I.xj >xi/, only the uncensored data from the individuals
who have not met the safety event criteria at xi contribute to the summations in Q̂θ,i.wi, xi/.
After computing Sθ,eff .wj, tj/ and Q̂θ,i.wi, xi/ for the uncensored and censored observations
respectively, we obtain RMM2-ISE θ̂ through solving the estimating equation

n∑
i=1

δi Sθ,eff .wi, ti/+ .1− δi/Q̂θ,i.wi, xi/=0: .5/

Under assumptions A1–A8 listed in on-line appendix A.1, we rigorously establish the con-
sistency and asymptotic properties of the estimator, i.e. we obtain θ̂−θ0 =op.1/, and n1=2.θ̂−
θ0/→N{0, A−1Ω.A−1/T} in distribution, where A and Ω are defined in theorem 2 of the on-line
appendix. We elaborate the consistency and asymptotic normality of RMM2-ISE in theorems 1
and 2 followed by their detailed proofs in the appendix in the on-line supplementary document.

3. Analysis of the A5175 study data

We are now ready to analyse the A5175 study data by using the RMM2-ISE-method. Before
the analysis, we first perform a numerical evaluation of the estimation procedure on simulated
samples and compare the estimation results with the IWLS method that was introduced in
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Section 1. The IWLS estimator is obtained by solving equation (5), but with Sθ,eff in it replaced
by σ−2.Wi/ξi@m.Wi, β/=@β, which is the score function that is associated with the weighted least
squares method. Here σ2.Wi/ is the conditional variance of ξi given Wi, which can be replaced
by its consistent estimator. The consistent estimator can be obtained by using the non-censored
observations, because our score function is first constructed for the fully observed samples which
relies on theσ2.Wi/ for only the non-censored observations. We discuss several ways of estimating
σ2.Wi/ later in this section. Note that the same replacement of Sθ,eff is needed in calculating
Q̂θ,i.wi, xi/ in equation (5). The asymptotic variance of the IWLS estimator can be shown to be
the same as Ω in theorem 2, except that Sθ,eff needs to be replaced by σ−2.Wi/ξi@m.Wi, β/=@β
and Qθ0,i is also adapted correspondingly. It is readily seen that the asymptotic estimation
variances of the RMM2-ISE- and the IWLS methods have the same structure except for the
different forms of Sθ,eff . This suggests that, intuitively, the RMM2-ISE-method would have
better asymptotic efficiency, because the score function for RMM2-ISE is more efficient than
that for IWLS (Wang and Leblanc, 2008; Kim and Ma, 2012) in the complete-data settings, and
the kernel imputation induces the same type of asymptotic variance inflation for both methods
when the data are subject to censoring. We explore the required sample sizes and censoring
rates for implementing the RMM2-ISE-procedure and show that the procedure yields accurate
estimators under reasonable uncensored sample sizes. Moreover, we show via simulation that
the RMM2-ISE-method gains efficiency compared with the simpler IWLS method when the
third moment of the error distribution does not vanish. These conclusions are crucial, because
they support the applications of the RMM2-ISE-method to the A5175 study data.

3.1. Evaluation of methods
We illustrate the relative performance of RMM2-ISE and the IWLS estimator through demon-
strating that the former is more efficient than the latter. Note that we use the same imputation
method in both estimation procedures.

In the complete-data setting, RMM2-ISE is shown to be more efficient than the IWLS es-
timator when the conditional third moment of the error distribution is non-zero (Wang and
Leblanc, 2008; Kim and Ma, 2012). To illustrate this point as well as the consistency of the
estimators under the setting with censoring, we generate the data as follows. The covariate Wi

is the logarithm of a random variable generated from the uniform (0, 5) distribution. The error
term ξi =χ2.ki/ − ki, where χ2.ki/ is generated from the χ2-distribution with degrees of free-
dom ki = .γ0 +γ1W2

i /=2. Note that the variance of ξi is σ2.Wi, γ/= 2ki, which depends on the
covariate, and E.ξ3

i |Wi/ does not vanish. We generate the time-to-safety end point Ti from the
exponential model

log.Ti/=β0 exp.β1Wi/+ ξi: .6/

We further generate the censoring time from exponential distributions. We vary the exponential
rate parameters to obtain various censoring rates. We assess the performances of RMM2-ISE
and the IWLS estimator at various censoring rates.

Following model (2), we obtain the semiparametric efficient score functions for the above
model as

Sβ,eff .W , T/= .exp.β1W/, β0 exp.β1W/W/T

{
ξ

σ2.W , γ/
− E.ξ3|W/D

σ2.W , γ/E.D2|W/

}
,

Sγ,eff .W , T/= .1, W2/T D

E.D2|W/
:
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Table 1. Comparisons of the optimal IWLS estimator and RMM2-ISE†

Truth Results for IWLS Results for RMM2-ISE

β0 β1 β̂0 β̂1 SD(β̂0) SD(β̂1) β̂0 β̂1 SD(β̂0) SD(β̂1) γ̂0 γ̂1

0% censoring rate
1.0 −0:2 0.954 −0:195 0.053 0.041 0.972 −0:196 0.048 0.036 0.802 0.071
1.0 −0:4 0.958 −0:393 0.056 0.033 0.974 −0:399 0.046 0.030 0.794 0.078
1.0 −0:6 0.966 −0:593 0.060 0.034 0.980 −0:598 0.049 0.030 0.797 0.091
1.0 −0:8 0.970 −0:790 0.070 0.040 0.988 −0:793 0.054 0.037 0.840 0.097

15% censoring rate
1.0 −0:2 0.895 −0:187 0.053 0.045 0.951 −0:190 0.042 0.041 0.728 0.068
1.0 −0:4 0.894 −0:391 0.057 0.043 0.951 −0:392 0.045 0.037 0.730 0.078
1.0 −0:6 0.897 −0:595 0.067 0.047 0.956 −0:588 0.048 0.041 0.742 0.084
1.0 −0:8 0.894 −0:803 0.074 0.061 0.957 −0:786 0.055 0.048 0.751 0.093

25% censoring rate
1.0 −0:2 0.851 −0:184 0.057 0.049 0.925 −0:180 0.046 0.049 0.744 0.063
1.0 −0:4 0.850 −0:396 0.059 0.047 0.926 −0:385 0.047 0.044 0.742 0.067
1.0 −0:6 0.849 −0:607 0.066 0.057 0.929 −0:587 0.055 0.053 0.755 0.068
1.0 −0:8 0.842 −0:823 0.073 0.073 0.927 −0:787 0.059 0.062 0.768 0.078

50% censoring rate
1.0 −0:2 0.736 −0:193 0.057 0.053 0.848 −0:185 0.054 0.054 0.794 0.042
1.0 −0:4 0.729 −0:425 0.065 0.057 0.855 −0:386 0.055 0.059 0.776 0.059
1.0 −0:6 0.722 −0:665 0.075 0.082 0.853 −0:605 0.063 0.073 0.787 0.067
1.0 −0:8 0.709 −0:912 0.088 0.122 0.848 −0:814 0.071 0.097 0.792 0.070

75% censoring rate
1.0 −0:2 0.581 −0:248 0.055 0.074 0.739 −0:218 0.061 0.073 0.843 0.034
1.0 −0:4 0.577 −0:558 0.063 0.123 0.741 −0:465 0.058 0.092 0.838 0.033
1.0 −0:6 0.567 −0:889 0.072 0.200 0.736 −0:711 0.072 0.138 0.818 0.048
1.0 −0:8 0.556 −1:245 0.080 0.309 0.724 −0:953 0.076 0.191 0.795 0.069

†Sample size, n=400; β0 =1; γ = .1, 0:1/T. SD represents the sample empirical standard deviation based on 1000
simulations.

We then impute the above score functions as described in Section 2 to estimate the parameters.
We use the true E.ξ3

i |Wi/ and E.ξ4
i |Wi/ to obtain RMM2-ISE and use the true E.ξ2

i |Wi/ to
form the optimal weights 1=σ2.Wi, γ0/ to obtain the IWLS estimator. This guarantees that both
estimators achieve their optimal performance in the complete-data setting. In other words, we
avoid the hidden efficiency loss due to possible misspecification of moment functions in both
estimators to keep the comparison fair. We compare the biases and variances of the resulting
RMM2-ISE and IWLS estimators in all the numerical experiments.

3.2. Numerical results for the estimation procedures
We use a sample size n = 400 and generate 1000 data sets from model (6), with β0 = 1 and
γ = .1, 0:1/. In Table 1, we present the performance of RMM2-ISE and the IWLS estimator
under different specifications of β1 and censoring rates. Here E.ξ3

i |Wi/ is estimated through
fitting a linear model between ξ̂

3
i and the covariates, and E.ξ4

i |Wi/ is estimated through fitting
a quadratic model between ξ̂

4
i and the covariates. Here ξ̂is are the residuals after fitting a linear

regression for the non-censored observations. The linear model is simple and the most common
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Table 2. Estimation variations when β0 D1,β1 D�0.6,γ0 D1 and γ1 D0.1†

Censoring SD(β̂0) SD(β̂1) ̂SD(β̂0) ̂SD(β̂1) SD(γ̂0) SD(γ̂1) ̂SD(γ̂0) ̂SD(γ̂1)
rate (%)

0 0.049 0.030 0.045 0.031 0.171 0.095 0.254 0.118
15 0.048 0.041 0.054 0.039 0.128 0.100 0.174 0.124
25 0.055 0.053 0.045 0.036 0.127 0.088 0.161 0.123
50 0.063 0.073 0.028 0.028 0.137 0.071 0.102 0.075

†SD represents the empirical standard deviation from the 1000 simulation runs. ̂SD represents the theoretic
asymptotic standard deviation.

regression model in practice, whereas the quadratic model ensures the non-negativeness of the
regression function. We first fit the working model on the basis of the non-censored residuals and
covariates, and then use the fitted model to impute the additional censored moments. Neither
the linear nor the quadratic model is the true model of these conditional moments. However, for
the IWLS method, we used E.ξ2

i |Wi/ under the true model. This means that we compared a sub-
optimal RMM2-ISE-method with the optimal IWLS method. Hence theoretically there is no
guarantee that RMM2-ISE should outperform the IWLS estimator. We used this particularly
harsh setting for RMM2-ISE to test its performance stability and robustness to the working
models. As we can see, if no observation is censored (the censoring rate is 0%), both estimates are
close to the true values. This illustrates the consistency of the estimators when no observation
is censored. Further, RMM2-ISE has smaller biases and variances compared with the IWLS
estimator, which illustrates the better accuracy and efficiency of RMM2-ISE compared with the
IWLS estimator. When the censoring rate is greater than 0, RMM2-ISE continues to perform
well. In fact, even when the censoring rate is moderately large (25%), RMM2-ISE is still close
to the truth (with less than 0.1 absolute biases). Because censoring reduces the information
that is contained in the sample for inferring the population distributions, both RMM2-ISE and
the IWLS estimator start to deteriorate when the censoring rates further increase. However,
RMM2-ISE has smaller deterioration compared with the IWLS estimator under all situations.
For example, the IWLS estimator for β0 shows more than 0.1 absolute biases when the censoring
rate is 15%, whereas the corresponding RMM2-ISE-estimator keeps the absolute biases within
0.1 until the censoring rate reaches 50%. Compared with the estimation of β0, the RMM2-ISE-
and IWLS methods perform better in estimating the parameter of clinical interest, β1. Never-
theless, the IWLS estimator has biases greater than 0.1 when the censoring rate is 50%, whereas
this occurs for RMM2-ISE only when the censoring rate reaches 75%. Overall, compared with
the IWLS estimator, RMM2-ISE generally has smaller biases in estimating β. The standard de-
viations of RMM2-ISE are smaller than those of the IWLS estimator on average. In conclusion,
the RMM2-ISE-method performs better than the IWLS method in terms of smaller biases and
variations in the resulting estimation. In the simulation studies, we see that the bias increases
when the censoring rate increases. Compared with β̂, γ̂ has larger bias and variance. However,
this does not indicate that the estimator is inconsistent. In fact, when we further increase the
sample size, we observe a clear reduction in the biases. Thus, the relatively large bias at high
censoring rate that we observe here is a finite sample phenomenon.

In Table 2, we compare the estimated asymptotic standard deviation derived in theorem 2 with
the empirical estimation standard deviation summarized from the simulated samples. The results
show that, when the censoring rate is small (25% or less), the asymptotic standard deviation
estimators are close to the empirical estimators, whereas their performance deteriorates when
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Table 3. Estimation results from 1000 simulation runs when nD800,β0 D1,β1 D�0.6,γ0 D1 and γ1 D0.1†

Censoring Results for IWLS Results for RMM2-ISE
rate (%)

β̂0 β̂1 SD(β̂0) SD(β̂1) β̂0 β̂1 SD(β̂0) SD(β̂1) γ̂0 γ̂1

0 0.979 −0:638 0.089 0.094 0.978 −0:595 0.067 0.054 0.896 0.070
15 0.908 −0:654 0.075 0.100 0.948 −0:598 0.072 0.061 0.598 0.066
25 0.848 −0:671 0.084 0.129 0.902 −0:616 0.067 0.054 0.418 0.073
50 0.754 −0:710 0.072 0.101 0.806 −0:651 0.071 0.061 0.226 0.062

†E.ξ2|W/, E.ξ3|W/ and E.ξ4|W/ are estimated by the non-parametric kernel regression method.

the censoring rate increases. In the latter case, it may be preferable to use the bootstrap method
to assess the estimation variability, as suggested in Ma and Yin (2010) and Wang et al. (2012).
For example, we performed additional bootstraping for the 50% censoring rate case in Table 2.
The resulting bootstrap standard deviation is (0.046 0.079 0.122 0.065), which is much closer
to the empirical standard deviation (0.062, 0.071, 0.137, 0.071) than the estimated asymptotic
standard deviation (0.028, 0.028, 0.102, 0.075).

In the above evaluations, we demonstrate that the RMM2-ISE-method can accurately esti-
mate the covariate effect when the sample size is more than 400 and the censoring rate is less
than 50%. Further, RMM2-ISE has better efficiency and smaller mean-squared errors than the
IWLS estimator. This encourages us to use the RMM2-ISE-method to analyse the A5175 study
data, as we demonstrate in the next section. Moreover, we show that the asymptotic standard
deviations are close to the true standard deviations when the observed sample size is sufficient.
Finally, we show that the misspecification of E.ξ3

i |Wi/ and E.ξ4
i |Wi/ does not affect the estima-

tions for the parameters β0 and β1. Thus, in practice, we can estimate the conditional moments
roughly by constructing simple models between W and the power functions of the residuals, such
as linear models. This was also justified in Wang et al. (2008), which showed that the estimation
procedures using the true and the estimated moment functions have similar performance.

Finally, we also perform simulation studies when E.ξ2
i |Wi/ in the IWLS method and E.ξ3

i |Wi/

and E.ξ4
i |Wi/ in the RMM2-ISE-method are estimated by using the non-parametric Nadaraya–

Watson kernel method for sample size 800. Compared with IWLS, RMM2-ISE gives less biased
results and has smaller variation for estimating the covariate effect. In general, the estimators
in Table 3 show larger biases and variations compared with the results in Table 1.

3.3. Analysis of the A5175 study data
We apply the RMM2-ISE-method to the A5175 study data, which aims to evaluate the safety of
the antiretroviral regimens. We find that RMM2-ISE gives a better fit to the A5175 study data
compared with the commonly used AFT–Weibull–ML method.

We use a total of 1008 patients who have been assigned to open-label antiretroviral therapy
with efavirenz plus lamivudine–zidovudine and atazanavir plus didanosine-EC plus emtricit-
abine treatment arms. A total of 460 patients have their safety events censored, resulting in a
censoring rate of 46%. For each patient, we compute the mean of the CD4 cell counts before his
or her safety event occurs. To stabilize the numerical computations, we standardize the event
times and mean CD4 cell counts by their sample standard deviations, which are approximately
40 and 160 respectively. The transformation is monotone so it does not affect the following
inference.
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Fig. 1. Preliminary analysis results for the A5175 study data: (a) residual versus covariate; (b) residual
squared versus covariate and a local regression line describing the relationship between ξ2 and the covariate;
(c) scatter plot of the covariate residual cubed and the estimated third moment of the error distribution as a
function of the covariate

We denote the standardized event time as Ti and the logarithm of the standardized mean CD4
cell counts as Wi. We first fit the complete data with the linear model

log.Ti/=β0 +β1Wi + ξi,

such that E.ξi|Wi/=0. Here we use only the non-censored cases to do the initial analysis because
our score function in expression (2) is constructed for the non-censored cases only. Further, the
data set contains 548 observed survival times, which are sufficient to reveal the general pattern of
the error distribution. We plot the residuals ξ̂i = log.Ti/− β̂0 − β̂1Wi versus the covariate in Fig.
1(a), where β̂0 and β̂1 are the least squares estimators of β0 and β1 respectively. The residuals
are centred at zero, which suggests that the model is adequate to capture the mean structure.
Further, the error variation becomes larger when the covariate value increases, which implies
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a dependence of the error variance on the covariate. To explore this dependence, we plot the
residual squares ξ̂

2
i against the covariates in Fig. 1(b). The plot shows that the variation has a non-

linear relationship with Wi. We therefore enrich the linear mean model by further modelling
the variance σ2.Wi, γ/. We considered various non-linear forms of σ2.Wi, γ/ and found the
form σ2.Wi, γ/ = .γ0 + γ1Wi/

2 to be both adequate and parsimonious, in that it captures the
variability pattern well, and it is simple and yields the smallest estimation variability for β̂,
and this β̂ is closest to that from the IWLS method among all the non-linear models that
we experimented with. Because the misspecification of σ2 may lead to inconsistent estimators,
in practice, we suggest first to use proper variance modelling tools, such as graphical tools,
to determine suitable functional forms for σ2.Wi, γ/. After that, we can select the resulting β̂
from RMM2-ISE which are reasonably close to that from IWLS, because IWLS is always a
consistent method regardless of whether the variance form is correctly specified. Finally, we
can refine our choices by comparing the variances of β̂ among the possible candidate variance
models.

We implemented RMM2-ISE-estimation on this specific model, and obtained the estimates
.β̂0, β̂1, γ̂0, γ̂1/= .−0:75, 1:00, 1:25, −0:047/, with associated standard errors {SD.β̂0/, SD.β̂1/,
SD.γ̂0/, SD.γ̂1/}= .0:047, 0:056, 0:021, 0:049/. The 95% confidence intervals for the parameters
.β0, β1, γ0, γ1/ are {.−0:84, −0:66/, .0:89, 1:11/, .1:20, 1:29/, .−0:14, 0:049/}, which show a sig-
nificant effect of the CD4 cell counts on the primary safety end point. The covariate effect γ1 is
not significant, which coincides with the local regression line that we added in Fig. 1(b). The local
regression technique was proposed by Cleveland (1979). It uses local segments of data to build a
function non-parametrically to describe the relationship between the response and the covariate.
It can be seen that the local regression line is nearly flat, which suggests that there is no statis-
tically significant effect from the covariate. We also performed IWLS estimation and obtained
.β̂0, β̂1/= .−0:74, 0:99/, with associated standard errors {SD.β̂0/, SD.β̂1/}= .0:052, 0:056/. To
obtain the second moment σ2.Wi/ as the weight, we first form the regression residuals. Then
we propose a working model for σ2.Wi/ that is the same as the second-moment model that
was used in the RMM2-ISE method, i.e. let σ2.Wi/= .γ0 +γ1Wi/

2, and then perform the usual
regression analysis to estimate the parameters in the model and hence obtain the second mo-
ment. The results show that RMM2-ISE-estimation is as efficient as the IWLS method. The
similar efficiency is not unexpected because, as shown in Fig. 1(c), the estimated conditional
third moments of the error terms, i.e. E.ξ̂

3
i |Wi/, are nearly 0. In fact, when we regress ξ̂

3
i on Wi,

the resulting intercept is 0.0036 with confidence interval (−0:02, 0:020), and the resulting co-
variate effect is 0.0004 with confidence interval (−0:0044, 0:011). However, from another aspect,
the analysis does demonstrate that the RMM2-ISE-method is at least as efficient as the IWLS
method. Therefore we employ the RMM2-ISE-method for the subsequent analyses which en-
sures that the estimators have variances that are no greater than those resulting from the IWLS
method.

To compare the performance of the RMM2-ISE-method with that of the commonly used
AFT–Weibull–ML method for the Weibull model, we calculated the mean-squared residuals on
the logarithmic scale on the basis of the 548 fully observed samples, and we obtained the values
1.93 for the RMM2-ISE- and 4.69 for the AFT–Weibull–ML method respectively. The compari-
son based on the observed samples was justified and suggested by Little (1992) in the missingness
at random framework, which is the setting in which the non-informative censoring belongs. To
avoid overfitting, we performed an additional twofold cross-validation. The cross-validation
errors (mean-squared predictive error) for the method proposed and the AFT–Weibull–ML
method are 1.89 and 4.23 respectively, indicating that the method proposed outperforms the
AFT–Weibull–ML method. The RMM2-ISE-method provides a much better fit to the data
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than does the AFT–Weibull–ML method, which also implies that the survival time distribution
deviates from Weibull.

After demonstrating the better performance of RMM2-ISE in fitting the A5175 study data,
we continue to explore the relationship between CD4 cell counts and the time to primary safety
end point in subgroups. We further divided the sample by gender and analysed the CD4 cell
counts effects for 479 females and 529 males separately. The estimated β in the females group
is .β̂0, β̂1/ = .0:14, 0:16/, and the standard errors {SD.β̂0/, SD.β̂1/}= .0:14, 0:21/, which give
the confidence intervals {.−0:13, 0:41/, .−0:25, 0:57/}. The estimated β in the males group is
.β̂0, β̂1/= .−0:36, 0:31/, and the standard errors {SD.β̂0/, SD.β̂1/}= .0:12, 0:14/, which give the
confidence intervals {.−0:60, − 0:12/, .0:04, 0:58/}. In the females group, the CD4 cell counts
do not have a significant positive effect on the primary safety end points, whereas the effect is
significant in the males group. Further, the CD4 cell counts effect is higher in the male patients
than in the female patients. It is worth mentioning that, when the AFT–Weibull model is used,
no difference between female and male patients can be discovered. In this case, the estimators
are .0:91, 0:32/ and .0:96, 0:31/, the standard deviations are .0:100, 0:09/ and .0:109, 0:112/ and
the 95% confident intervals are {.0:69, 1:13/, .0:11, 0:55/} and {.0:76, 1:16/, .0:13, 0:49/} for the
females and males respectively. In practice, because the CD4 cell counts are positively related to
time to adverse events, we suggest giving the antiretroviral regimens at higher CD4 cell counts
level to prevent severe side-effects from the drugs. Further, because the CD4 cell counts effects
are different in the two genders, we suggest differentiating the drug scheduling for men and
women.

Using the RMM2-ISE-method, we develop a strategy to personalize the drug scheduling
based on the A5175 data, where the patients are all enrolled at the beginning of the trial and
continuously monitored in the trial, as we now describe. We first define a safety cut-off value
regarding the primary safety end point. The drug usage is considered to be safe for a patient
if the patient’s estimated primary safety end point is later than the cut-off value. A patient’s
CD4 cell counts are taken at the beginning of the trial (baseline), week 8, week 48, week 72,
etc. At a measurement time, say at week 48, we collect the CD4 cell counts information on each
patient, and collect his or her primary safety event time or his or her censoring time if either has
happened. For a patient who has not experienced the primary safety time and who has not been
censored, we use the measurement time as the censoring time. We then use the average observed
CD4 cell counts and the event or censoring time to obtain the estimator for the coefficients, i.e.
β. Then, for any patient who has not experienced the primary safety event at the 48th week,
we use the estimate β̂ and his or her average observed CD4 cell counts to predict his or her
primary safety event time. If the predicted primary safety event time is to the right of the safety
cut-off value, the treatment is considered safe for the patient. This patient is eliminated from the
current trial and moves to the next treatment phase. We perform this estimation and prediction
procedure at weeks 8, 48 and 72 and make corresponding decisions at each measurement time
based on the remaining patients in the trial.

We use the 75% sample quantile of the standardized primary safety end points, 2 (correspond-
ing to 79.14 in the original data), as a sample cut-off value. In practice, different and possibly
more meaningful cut-off values can be chosen based on existing medical knowledge. We choose
to start to treat a patient with the antiretroviral regimens when the lower bound of the estimated
confidence interval for the mean of log.Ti/, i.e. β̂0 + β̂1Wi −1:96{.1, Wi/

TΣ̂.1, Wi/}1=2, is greater
than log.2/, where Σ̂ is the estimated variance–covariance matrix for β̂. We perform the analy-
sis in the following three groups of patients. Group 1 contains patients who have only baseline
CD4 cell counts recorded. Group 2 contains patients who have CD4 cell counts measured at
and before the 48th week. Group 3 contains patients who have CD4 cell counts measured at
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and before the 96th week. The results show that, in group 1, 95 out of 188 (50.5%) patients have
the lower bound of the estimated confidence interval smaller than log.2/. Further, in group 2
and group 3, the ratios are 132 out of 201 (66%) and 94 out of 131 (72%) respectively. Therefore,
in these three groups, we can start to treat 50.5%, 66% and 72% of the patients at the baseline
randomization time, the 48th week or the 96th week respectively. Since the CD4 cell counts
are obtained before the primary safety end points, the strategy allows the patients to be treated
earlier when the evidence of the treatment safety is sufficient and thus improves the efficiency
of delivering the safe treatments to the patients.

In conclusion, we compared the RMM2-ISE-method with the AFT–Weibull–ML method.
The RMM2-ISE- outperforms the AFT–Weibull–ML method in giving smaller fitted mean-
squared residuals. Further, we discovered that the positive CD4 cell counts effects in men are
higher than that in women on average, whereas this pattern is not captured by the AFT–Weibull–
ML method. Finally, we propose a strategy for personalizing drug scheduling based on the
mean of the repeatedly measured CD4 cell counts. The strategy allows early treatment delivery
to patients based on their CD4 cell counts information, and ultimately enhances the treatment
efficiency.

4. Discussion

This work was motivated by the A5175 study (Campbell et al., 2012). We intend to use the short-
term CD4 cell counts to infer the primary safety end points. The complex data configuration
motivates us to construct a second-order restricted moment model which models the additional
variance structures that are observed from the data. We propose a non-parametric imputed
version of the semiparametric efficient method for parameter estimations to handle censoring.
The theoretical derivations show that the resulting estimators are consistent and asymptotically
normally distributed. The efficiency of RMM2-ISE is demonstrated to be better than that of
IWLS estimators. When fitting the A5175 study data, the RMM2-ISE-method outperforms the
AFT–Weibull–ML method in terms of having smaller mean-squared residuals.

In the A5175 data analysis, because of the limitation of the univariate kernel specification,
we did not include multiple covariates in the regression function. The method can be extended
to include multiple covariates through utilizing multivariate kernels. Such an extension will
enhance the applicability of the model in more general situations.

In conclusion, to analyse the A5175 data, the second-order restricted moment model avoids
the model assumptions on the full likelihood and is more flexible than parametric models.
Further, in terms of parameter estimation, the RMM2-ISE-method takes advantage of the
additional information in the variance structure and has better efficiency than the IWLS method.
In general, the RMM2-ISE-approach provides a more robust and efficient way of analysing
post-trial data.

We have assumed that the censoring process is independent of the covariates and the survival
process for simplicity. This assumption can be relaxed to allow the censoring time to depend
on the covariates wj. In this case, we can use a non-parametric kernel-based Kaplan–Meier
estimator

Ĝ.tj|Wj =wj/= ∏
xi�tj

{
1− .1−Δi/Kh.wi −wj/

n∑
k=1

I.xk �xi/Kh.wk −wj/

}

in equation (4). However, the subsequent development will also need to be adapted to reflect
the covariate-dependent nature of the censoring process and the analysis will be more complex.
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