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Summary

Rapid improvement in technology has made it relatively cheap to collect genetic data, however
statistical analysis of existing data is still much cheaper. Thus, secondary analysis of single-
nucleotide polymorphism, SNP, data, i.e., reanalysing existing data in an effort to extract more
information, is an attractive and cost-effective alternative to collecting new data. We study the
relationship between gene expression and SNPs through a combination of factor analysis and
dimension reduction estimation. To take advantage of the flexibility in traditional factor models
where the latent factors are not required to be normal, we recommend using semiparametric suf-
ficient dimension reduction methods in the joint estimation of the combined model. The resulting
estimator is flexible and has superior performance relative to the existing estimator, which relies
on additional assumptions on the latent factors. We quantify the asymptotic performance of the
proposed parameter estimator and perform inference by assessing the estimation variability and
by constructing confidence intervals. The new results enable us to identify, for the first time,
statistically significant SNPs concerning gene-SNP relations in lung tissue from genotype-tissue
expression data.

Some key words: Dimension reduction; Factor model; High dimension; Nonparametric method; Semiparametric
method.

1. Introduction

Gene expression quantitative trait loci, eQTLs, are genetic variants that may explain variations
in gene expression. Identifying eQTLs is an important area in genetics because it is the only way
to understand how genetic variants function at the molecular level (Nica & Dermitzakis, 2013);
it is also the most prominent way of discovering gene regulation networks (Gilad et al., 2008).
Many genomic findings rely on eQTLs for meaningful interpretation. For example, numerous
genome-wide association studies have been performed in recent years to identify genetic variants
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Fig. 1. Data structure of an eQTL study.

associated with complex diseases (Visscher et al., 2012; Lee et al., 2014). Such efforts have
resulted in more than 2000 disease-associated variants being identified. However, most of them
are noncoding, so their links to underlying diseases are likely to be through regulating gene
expression. Consequently, understanding how these genetic variants are associated with gene
expression is essential for interpreting these disease-associated variants.

Figure 1 illustrates the typical data structure of an eQTL study. The grey box indicates the
location of a target gene in the genome, whose expression levels are measured either by microarray
(Schena et al., 1995) or by more recently developed RNA sequencing techniques (Wang et al.,
2009). The vertical bars underneath represent the locations of a set of pre-identified candidate
SNPs within a local region centred at the gene, delineated by the vertical dashed lines. More
candidate SNPs will be included as the width of the search window expands. Typical choices of
window length include 20 kb, 100 kb and 1 Mb. The goal of eQTL studies is to identify which
candidate SNPs are significantly associated with the target gene expression. To further illustrate
the eQTL analysis, we retrieve a subset of data from a genotype-tissue expression pilot dataset
collected in one of the major international projects on eQTL discovery (Lonsdale et al., 2013). The
data are available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000424.v5.p1, and include samples of lung tissue collected
from 278 subjects. For each tissue sample, the gene expression levels were measured across
the entire genome using RNA-Seq technology; the tissue was also genotyped across the entire
genome. We randomly select a gene, ENSG00000225880.4, and denote by Yi its expression level
in the ith tissue sample (i = 1, . . . , 278). Using a window length of 20 kb, we identified 117
candidate SNPs, and use Xi = (Xi,1, Xi,2, . . . , Xi,p)

T to denote the genotypes of these SNPs in the
ith tissue sample. The goal of the analysis is to identify the genetic variations across individuals
that could explain the different gene expression levels in their lung tissue.

Due to the high cost of measuring gene expression levels, most eQTL data have limited sample
size. Constrained by the limited sample sizes, most eQTL analyses are conducted separately
for each gene-SNP pair (Ardlie et al., 2015). Typically, at any one time researchers will study
the mean gene expression level given a single SNP while ignoring other covariates. Previous
studies using this approach have identified the eQTLs in lymphocytes and in the adrenal gland,
thyroid, arterial and skin tissue for the gene ENSG00000225880.4; see the reported single-
tissue eQTLs at http://gtexportal.org/. When we applied this kind of modelling and
estimation approach to the lung tissue data in § 5, we identified 76 significant SNPs after the
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Fig. 2. Correlation between the unselected SNPs and a selected SNP, rs67081753.

Bonferroni correction. However, because the analysis ignores the correlation between the SNPs,
it cannot control the overall false discovery rate. For example, two strongly associated SNPs
can be selected together, although they explain the same variation in the gene expression. To
overcome this deficiency, recent efforts in eQTL analysis have focused on combined analysis of
all the genetic variations, see Kendziorski et al. (2006) and Gelfond et al. (2007) for examples.
In addition, it is unlikely that gene expression can be regulated by a single SNP, or by multiple
SNPs independently. Therefore, it is also desirable to estimate the joint associations between the
gene expression Y and all of the candidate SNPs. However, it is challenging to estimate a full
model, as p could be comparable to or even much greater than the sample size n.

Current practice in the high-dimensional setting relies on putting penalties on the parameters
and assuming sparsity of the data. Following this general approach, we implemented several
penalization methods. Again, none of them yielded satisfactory results. For example, we used
the adaptive lasso method (Zou, 2006) to select a subset of SNPs and computed the correlation
between the selected and unselected SNPs. The correlation can be as high as 0.8, as seen in Fig. 2,
which casts doubt on the sparsity assumption. In fact, sparsity may not always hold in practice
(De Mol et al., 2008; Giannone et al., 2017), and care needs to be taken before making such an
assumption (Barigozzi & Hallin, 2017). The possible violation of the sparsity assumption here
motivated us to consider an alternative to the penalization method.

The alternative that we propose is to extend sufficient dimension reduction methods (Li, 1991;
Cook, 1998; Ma & Zhu, 2012) under a semiparametric framework to handle high-dimensional
challenges in eQTL analysis. With semiparametric modelling, one can further leave the relation
between the gene expression and the SNPs unspecified to avoid the risk of model misspecification.

Sufficient dimension reduction has gained much attention since its original introduction by
Li (1991). A very comprehensive survey of this area can be found in Cook (1998). See also
Ma & Zhu (2013b) for a review of more recent developments. The vast majority of the work
in this area deals with a moderate number of covariates, despite the claim of high dimension;
this is partly due to the difficulty of the problem. Indeed, when the regression function is left
unspecified, finding the sufficient dimension reduction space is already difficult when the number
of covariates is moderate. The scarcity of research dealing with very high-dimensional covariates
in this framework is also because a sparsity and penalization approach is almost unavoidable
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(Tan et al., 2018) if the number of covariates is truly very large, such as in the situation where
the number of covariates is larger than the number of observations, even when the sufficient
dimension reduction assumption has already been made. This presents a somewhat awkward
situation because one of the original goals of sufficient dimension reduction was to provide an
alternative approach to handling a large number of covariates, that avoids the popular sparsity
assumption and penalization technique.

This awkward situation is successfully avoided by a creative modelling approach proposed
recently by Fan et al. (2017), which jointly uses the factor model and the sufficient dimension
reduction technique to analyse high-dimensional data in a time series context under the linearity
condition. We adapt the idea of combining factor analysis and dimension reduction estimation to
performing secondary analysis of SNP-gene expression data, and we further relax some of the
assumptions of Fan et al. (2017) and enhance their results. Specifically, we relax the distributional
requirements on the covariates, rigorously establish the identifiability property, and establish
first-order asymptotic properties that enable inference.

We study the identifiability of the model in the sense that it is uniquely defined, and we illustrate
how the distribution of the covariate vector affects model identifiability. Bai & Ng (2013) claimed
that a factor model is computationally identifiable if the number of unknown parameters is the
same as the number of equations to solve. We further establish that under the same condition, the
model is asymptotically identifiable as p, n → ∞.

In addition, we establish the asymptotic normality of our estimators obtained from combining
the factor analysis and the sufficient dimension reduction models, and derive their asymptotic
variances, which were not provided in Fan et al. (2017), for forecasting. This result allows us
to perform statistical inference and calculate p-values, which is crucial in identifying significant
SNPs. Furthermore, the detailed asymptotic analysis describes how the ratio p/n affects the esti-
mation variance. Taking advantage of the double robustness property, the estimation variance in
estimating the sufficient direction is not inflated by the estimation error in the factor analysis when
p grows sufficiently faster than n. A similar result was also shown in Stock & Watson (2002).

2. Model specification

Recall that Yi is the expression level of a target gene from the ith subject (i = 1, . . . , n) and Xi
is a p-dimensional vector of covariates, which include the subject’s p1 SNP values within a local
region around the target gene, along with p2 controlling covariates. Let p = p1 + p2. We assume
that the observations (Xi, Yi) are independent and identically distributed, and that the association
between Yi and Xi is fully captured by a latent factor fi, i.e., Yi is independent of Xi when fi is
given. More specifically, let Xi = (Xi1, . . . , Xip)

T with

Xil = bT
l fi + uil (1 � l � p; 1 � i � n), (1)

where bl is a q-dimensional vector. The relation in (1) can be written in the matrix form

Xi = Bfi + ui, (2)

where fi = (fi1, . . . , fiq)T is a q-dimensional vector of factors, B = (b1, . . . , bp)
T is a p × q

deterministic matrix, ui = (ui1, . . . , uip)
T and u = (u1, . . . , un). We require q < p and require ui to

be independent of fi and E(ui) = 0. Let F = (f1, . . . , fn)T be an n×q matrix and X = (X1, . . . , Xn)

an p×n matrix.We further consider a sufficient dimension reduction model of the factors f1, . . . , fn,
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Sufficient direction factor model 421

Yi = ψ
(
βTfi, εi

)
, (3)

where ψ is an unknown function, εi is a random variable independent of βTfi and ui, and β is a
q × d dimensional parameter vector with d < q.

Considering jointly (2) and (3), and ignoring the error ui in (2), fi = (BTB)−1BTX , so βTfi
in (3) can be written as {B(BTB)−1β}TX . In other words, the covariate effect of X on Yi can be
summarized through α ≡ B(BTB)−1β, which essentially allows the reduction of the covariate
dimension from p to d. The first p1 rows of α correspond to the effects of the first p1 SNPs on the
gene expression level in the sufficient direction. We can determine whether the jth SNP in eQTL
is significant by testing the null hypothesis αj· = 0.

The idea of combining the factor model (1) and the sufficient dimension reduction model (3)
when there are a large number of predictors and an unknown link functionψ was first proposed by
Fan et al. (2017) in the context of statistical forecasting. The dimension reduction was performed
in two steps. First, the dimensionality was reduced from p to q via the high-dimensional factor
model (1). Second, using the extracted factors, Fan et al. (2017) developed a link-free sufficient
forecasting method based on sliced inverse regression to further reduce the dimension from q to
d and to deliver additional predictive power.

The drawback of sliced inverse regression is that it requires the linearity condition on the
covariates fi, i.e., it requires that E(fi | βTfi) = β(βTβ)−1βTfi for all fi. Since the factor model
and its subsequent estimation procedure do not rely on such restriction of the factors fi, and
since the fi themselves cannot be observed directly, it is desirable to allow as much flexibility
as possible and avoid any structural assumptions on the distribution of the fi. Thus, to relax the
linearity condition on the latent variables, we adopt the semiparametric approach introduced
in Ma & Zhu (2012) for the estimation in the dimension reduction step. The essential idea in
relaxing the linearity condition is to reformulate the sliced inverse regression so that it can be
written equivalently in an estimating equation form, where the estimating function has a product
form. The linearity condition leads to the zero mean of one multiplier of the product form, and
one can apply a centring procedure to the other multiplier to achieve zero mean as well if the
linearity condition is violated, hence retaining the consistency of the estimating equation. In
addition, replacing the linear form of E(f | βTf ), which is assumed by the linearity condition,
with its nonparametric estimate can achieve a double robustness property and reduce estimation
variance. The generality of the semiparametric dimension reduction method allows us to study
a wide range of sufficient dimension reduction estimates within a unified framework and results
in a rich class of estimators, including the classical dimension reduction techniques as special
cases. We will show that all the desired properties in Fan et al. (2017) can be achieved without
the linearity condition. Most importantly, in addition to the results on convergence order, we
derive the specific forms of the asymptotic variances, which were not given in Fan et al. (2017).
This is crucial because the calculation of p-values and the identification of statistically significant
covariates, i.e., the identification of eQTLs, relies on such properties.

3. Estimation

3.1. Estimation algorithm

We first use factor analysis on (1) to obtain f̂i, an estimator for fi, and then plug f̂i into (3) in
place of fi and find the sufficient direction by semiparametric dimension reduction techniques.
Specifically, the estimation procedure is as follows.
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Step 1. Following Fan et al. (2017), we solve the constrained least squares problem

(B̂, F̂) = arg min
B,F

‖X − BFT‖2
F

subject to n−1FTF = Iq, BTB is diagonal

to obtain the estimators F̂ = (f̂1, . . . , f̂n)T for F and B̂ = (b̂1, . . . , b̂p)
T for B, where f̂i and b̂l are

the estimators for fi and bl , respectively. This is a classical principal components problem. The
estimated factor matrix F̂ is n1/2 times the eigenvectors corresponding to the q largest eigenvalues
of the n × n matrix X TX , and B̂ = n−1X F̂ is the corresponding factor loading matrix.

Step 2. Treating the f̂i as the covariates, following Ma & Zhu (2012) we then solve

n−1
n∑

i=1

[
g(Yi,βT f̂i)− Ê{g(Yi,βT f̂i) | βT f̂i}

] [
η(f̂i)− Ê{η(f̂i) | βT f̂i}

] = 0 (4)

for β. The resulting β̂ is the estimator for β0. Here, g and η are user-chosen smooth functions,
and

Ê{g(Yi,βT f̂i) | βT f̂i} =
∑n

j=1 Kh(β
T f̂j − βT f̂i)g(Yj,βT f̂j)∑n

j=1 Kh(β
T f̂j − βT f̂i)

Ê{η(f̂i) | βT f̂i} =
∑n

j=1 Kh(β
T f̂j − βT f̂i)η(f̂j)∑n

j=1 Kh(β
T f̂j − βT f̂i)

,

where for vector x = (x1, . . . , xd)
T, Kh(x) = (1/hd)

∏d
l=1 K(xl/h) is a product kernel func-

tion with a unified bandwidth h, which only needs to be in the range between n−1/(2d) and
n−1/(4m), where m is the kernel order. We assume that we have arranged g and η properly so that
g(Y ,βTf )η(f ) is a vector of length (q − d)d. Some special choices of g and η lead to semipara-
metric sliced inverse regression, semiparametric principal Hessian directions, semiparametric
sliced average variance estimation, and semiparametric dimension reduction (Ma & Zhu, 2012).

Step 3. Estimate the individual covariate effect α by α̂ ≡ B̂(B̂TB̂)−1β̂, where B̂ and β̂ are,
respectively, the estimated factor loading matrix and estimated parameters from the previous steps.

Considering the equivalence between the relations X = BFT + U and X T = FBT + U T,
we could also reverse the treatment of B and F as in Stock & Watson (2002) and Fan et al.
(2013). We have opted for the current treatment so that we only need to handle an n × n matrix
X TX , instead of a possibly much larger p × p matrix XX T. Combining the facts that the f̂i, the
kernel estimators and the sufficient dimension reduction estimator are consistent, we show the
consistency of our proposed procedure in Theorem 1. Moreover, in Theorem 2, we show that the
estimation variation in f̂i and that arising from the kernel estimators do not inflate the variation
in β̂ when n1/2p−1 → 0, a condition that is readily satisfied in our setting.

3.2. Selection of the functions g and η and the tuning parameters

In Step 2 of the above estimation procedure, users have the freedom to choose the functions g
and η. The general requirement is that g be a function of Y and βTf only, that η be a function of
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f only, and that they should be sufficiently rich that the dimension of gη is at least (q − d)d. For
example, we could select the components of g to be polynomials of (Y ,βTf ) and those of η to be
monomials of f , i.e., g = {Y , f Tβ, Y 2, Y (f Tβ), (f Tβ)⊗ (f Tβ), . . . , Y k , Y k−1(f Tβ), . . . , (f Tβ)⊗
· · ·⊗(f Tβ)}T and η = {f T, (f ⊗ f )T, . . . , (f ⊗· · ·⊗ f )T}. Because the number of parameters in this
step is (q−d)d, we need the dimension of gη to be at least (q−d)d. If more than (q−d)d equations
are obtained from gη, we bring the number down to exactly (q−d)d by applying the generalized
method of moments. Different choices of g and η will affect the estimation variability of β, while
the consistency of the β estimation is retained regardless of the choices of g and η. The optimal
choice consists of g = ∂ log fY |βTf (y,βTf )/∂(βTf ) and taking η to be a (p − d)-dimensional
subvector of f (Ma & Zhu, 2013a), for which the efficient estimator of β will be obtained. The
price associated with the optimal choice is the need to estimate the conditional density function
fY |βTf (y,βTf ) and its derivative with respect to βTf , so other non-optimal choices are also used
in practice. The bandwidth h does not play a critical role, and can be chosen as any value that
satisfies Condition 10 in § 4.2. In practice, a common choice is h = n−1/(2m+d), where m is the
order of the kernel function.

The proposed method includes determination of the dimension of the latent factor q and the
structure dimension d. For the choice of d, Ma & Zhang (2015) proposed a validated information
criterion, which selects d consistently through minimizing a validation of the goodness-of-fit.

The selection of the dimension q has been discussed extensively in the literature; see Bai &
Ng (2002), Alessi et al. (2010) and Ahn & Horenstein (2013) for the independent data case and
Hallin & Liška (2007) and Lam & Yao (2012) for the case of time series data. Compared to the
traditional factor analysis, the proposed estimation method is less sensitive to the selection of q,
because the subsequent sufficient dimension reduction method refines the dimension reduction
by using information from the Yi. Here, we propose to use the recently proposed criteria described
in Ahn & Horenstein (2013).

4. Main results

4.1. Uniqueness of the model in the ultrahigh-dimensional setting

The computational identifiability of the linear factor model is usually considered and mostly
relies on the equality of the number of unknown parameters and the number of equations con-
structed (Bai & Ng, 2013). In this work, we show the identifiability of the model in the sense that
the true model is uniquely defined. Only after such an identifiability property is established does
estimation become meaningful. Otherwise, estimation will not have a well-defined target and it
will become unclear what one is estimating.

To fix notation, let ‖W‖1 be the 1-norm of an arbitrary matrix W , i.e., the maximum of the
absolute column sums. Let ‖W‖2 be the 2-norm of the matrix, i.e., the maximum singular value
of W or the square root of the maximum eigenvalue of W TW . Let ‖W‖∞ be the sup-norm of the
matrix, i.e., the maximum of the absolute row sums. Finally, let ‖W‖F be the Frobenius norm.
For the identifiability of B and F as n, p → ∞, we require the following regularity conditions.

Condition 1. There exists a constant M , not depending on p and n, such that E(‖fi‖4
2) � M .

In addition, E(fi) = 0 and cov(fi) = Iq, where Iq is the q × q identity matrix.

Condition 2. Let bl be deterministic and such that ‖bl‖ � M , where M is a constant inde-
pendent of n and p. The matrix p−1BTB is diagonal, with distinct positive entries arranged in
decreasing order. As p → ∞, p−1BTB → �	, where�	 is a q × q diagonal nonrandom matrix
with positive distinct diagonal elements. In addition, the first nonzero element in each column of
B is positive.
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Condition 3. For some c > 0, the loading bl is such that ‖bl‖2 � c for l = 1, . . . , p. As
p → ∞, there are two positive constants c1 and c2 such that

c1 < λmin(B
TB/p) < λmax(B

TB/p) < c2.

Throughout the paper, λmin(M ) and λmax(M ) denote the minimum and maximum eigenvalues
of a symmetric matrix M , respectively.

Condition 4. The random variables ui are independent of each other, and each ui is independent
of bi and fi, with E(ui) = 0 and nE(u2

il) � M for all l = 1, . . . , p. Further, for all i = 1, . . . , n,∑p
l=1 E(u2

il) � M and p−1/2 ∑p
l=1 |u2

il − E(u2
il)|4 � M .

Condition 5. As p → ∞, p−1/2 ∑p
l=l bluil → N (0,�) in distribution, where

� ≡ lim
p→∞ p−1

p∑
l=1

p∑
k=1

blb
T
kE(uiluik)

is a bounded variance matrix.

Condition 6. The random variables fi and ui are mutually independent conditional on B. In
addition, E(fif T

i u2
il) = �l .

Condition 4 implies ‖�U ‖1 � M , where �U = E(uiuT
i ). Conditions 1–4 are needed for

the identifiability and consistency of estimation, while Conditions 5 and 6 are needed for the
asymptotic distribution of the estimators. We first state the identifiability result as Proposition 1;
its proof is given in the Supplementary Material.

Proposition 1. Under Conditions 1–4, B and F are unique as p → ∞.

4.2. Theoretical properties

Fan et al. (2017) established the consistency of β̂ when sliced inverse regression is used in
the dimension reduction step. Their result requires the linearity condition. We adopt the semi-
parametric approach and show the consistency of the resulting estimator without imposing such
a linearity condition. This is an important step forward, as a key feature of the factor model is
that assumptions on the latent factor, including the linearity condition, need not be imposed.
In addition, we also show the asymptotic normality and derive the asymptotic variance of the
estimators. These results are crucial in genetic studies because they are required for inference,
p-value calculation, and selection of the significant SNPs. Our results are established in a very
general context and can be readily applied regardless of whether semiparametric sliced inverse
regression, semiparametric sliced average variance estimation, semiparametric dimension reduc-
tion, semiparametric principal Hessian directions, or any other choices of g and η are used to
conduct the second step of the factor analysis and the dimension reduction estimation.

Regularity conditions for the asymptotic properties are as follows.

Condition 7. The univariate kernel function K(·) is Lipschitz and has compact support. It
satisfies

∫
K(v) dv = 1,

∫
vtK(v) dv = 0 (1 � t � m − 1), 0 |=

∫
vmK(v) dv < ∞.
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The d–dimensional kernel function is a product of d univariate kernel functions, i.e., Kh(v) =
K(v/h)/hd = ∏d

l=1 Kh(vl) = ∏d
l=1 K(vl/h)/hd for v = (v1, . . . , vd)

T.

Condition 8. The density functions of fi and βTfi, denoted by πf (fi) and π(βTfi), are bounded
away from zero and infinity. Each entry in the matrices E{g(Yi,βTfi)g(Yi,βTfi)T | βTfi} and
E{η(fi)η(fi)T | βTfi} is locally Lipschitz continuous and bounded from above as a function
of βTfi.

Condition 9. Let r1(β
Tfi) = E{η(fi) | βTfi}π(βTfi) and r2(β

Tfi) = E{g(Yi,βTfi) |
βTfi}π(βTfi). The mth derivatives of r1(β

Tfi), r2(β
Tfi) and π(βTfi) are locally Lipschitz

continuous.

Condition 10. The bandwidth h = O(n−κ) for 1/(4m) < κ < 1/(2d).

Condition 11. For the identification of β, further assume that the upper d × d matrix of β is
an identity matrix and the lower (p − d)× d matrix of β is arbitrary.

Condition 12. Let E[g(Yi,βTfi)−E{g(Yi,βTfi) | βTfi}][η(fi)−E{η(fi) | βTfi}] be a smooth
function of β that has a unique root for β.

Condition 13. The random vectors fi, ui and εi are mutually independent.

Condition 7 is a typical assumption on the kernel function, where m is usually referred to as
the order of the kernel. Conditions 8 and 9 impose sufficient smoothness requirements on several
functions. Condition 10 adds a constraint on the bandwidth related to the kernel order and the
dimension d. It can be seen that as long as d � 3, the common second-order kernel function
is sufficient. Condition 11 guarantees the identifiability of β (Ma & Zhu, 2013a). Condition 12
ensures the global consistency of β̂ (White, 1982). Condition 13 contains standard independence
assumptions from the factor model and dimension reduction model formulation. These conditions
are all moderate and are commonly assumed.

Under the true model, we have

E
[
g(Yi,βT

0 fi)− E{g(Yi,βT
0 fi) | βT

0 fi}
] [
η(fi)− E{η(fi) | βT

0 fi}
] = 0. (5)

Therefore, we show the convergence of β̂ by showing that (4) converges to (5).
We are now ready to establish the main theorems of this article. Theorem 1 gives the consis-

tency property of the sufficient reduction directions, and Theorem 2 further states the asymptotic
properties of these directions. Specifically, the asymptotic normality is proven and the asymptotic
variance is derived. These results are established under the setting that both the dimension of the
covariates and the number of observations are growing, and that the covariate dimension is much
larger than the number of observations. These results are new and stronger than those in Fan
et al. (2017), and they are derived under more flexible conditions. The proofs are given in the
Supplementary Material.

Theorem 1. Assume that Conditions 1–12 hold, and let β̂ satisfy

n−1
n∑

i=1

[
g(Yi, β̂T f̂i)− Ê{g(Yi, β̂T f̂i) | β̂T f̂i}

] [
η(f̂i)− Ê{η(f̂i) | β̂T f̂i}

] = 0.

Then β̂ − β0 = op(1).
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Theorem 2. Assume that Conditions 1–12 hold, and let β̂ solve

n−1
n∑

i=1

[
g(Yi, β̂T f̂i)− Ê{g(Yi, β̂T f̂i) | β̂T f̂i}

] [
η(f̂i)− Ê{η(f̂i) | β̂T f̂i}

] = 0.

Then

n1/2 vecl(β̂ − β0) = T−1
0 n−1/2

n∑
i=1

[
g(Yi,βT

0 fi)− E{g(Yi,βT
0 fi) | βT

0 fi}
] [
η(fi)− E{η(fi) | βT

0 fi}
]

+ Op{hm + n1/2h2m + log2 n/(n1/2hd)+ p−1/2 + n1/2p−1 + n−1/2},

where T0 = E
(
∂
[
g(Yi,βT

0 fi)− E{g(Yi,βT
0 fi) | βT

0 fi}
][
η(fi)− E{η(fi) | βT

0 fi}
]/
∂ vecl(β0)

T
)

. Here

vecl(M ) denotes the vector formed by concatenating the columns of the lower (q−d)×d portion
of a q × d matrix M.

Therefore, as n, p → ∞ and n1/2p−1 → 0, n1/2 vecl(β̂ − β0) converges to a normal vector
with mean 0 and variance

�β = T−1
0 E

{([
g(Yi,βT

0 fi)− E{g(Yi,βT
0 fi) | βT

0 fi}
][
η(fi)− E{η(fi) | βT

0 fi}
])⊗2

}
(T−1

0 )T

where a⊗2 = aaT for an arbitrary matrix a.

Remark 1. For the case where d = 1 and ψ(·) is linear, Bai (2003) argued empirically that
the regression estimators converge to the true values at a root-n rate as n1/2p−1 → 0. Here we
establish the result rigorously and extend it to the cases where d > 1 and ψ(·) is an unknown
function.

5. Numerical evaluation

5.1. Simulations

In our simulation studies we let q = 6, d = 2 and p = 50.We took the sample size to be n = 300
and repeated our simulation 1000 times. To generate Xil from model (1), we consider two cases:
in Case I we simulate fi from a multivariate normal distribution with mean zero and covariance
matrix (σij)q×q where σij = 0.5|i−j|; in Case II we simulate fi1 and fi2 from a multivariate
normal distribution with mean zero and covariance matrix (σij)2×2 where σij = 0.5|i−j|. We
let fi3 = |fi1 + fi2| + fi1ξi1 and fi4 = |fi1 + fi2|2 + |fi2|ξi2, where ξi1 and ξi2 are independently
generated from the standard normal distribution, and we generate fi5 from a Bernoulli distribution
with success probability exp(fi2)/{1+exp(fi2)} and fi6 from a Bernoulli distribution with success
probability�(fi2), where� is the standard normal distribution function. We centre and normalize
F by its mean and covariance so that F satisfies Condition 1. To construct the matrix B, we first
generate n samples of p-dimensional random vectors Zi from a normal distribution with mean
zero and covariance matrix �z, where �zij = 0.5|i−j| for 1 � i, j � p. Let Z = (Z1, . . . , Zn)

T.
We perform eigendecomposition on the matrix ZZT, and retain the n × q orthogonal matrix E
that spans the eigenspace corresponding to the q largest eigenvalues. We form B = 1/61/2ZTE.
This construction yields the eigenvalues of BTB/p in the range (2, 3), which ensures that BTB =
Op(p), as required by Condition 3. To ensure Conditions 4 and 5, we simulate uil from a normal
distribution with mean zero and variance 1/(2n).
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Further, in model (3), we let β1 = (1, 0, 1, 1, 1, 1)/61/2 and β2 = (0, −1, 1, −1, 1, −1)/61/2.
We evaluated the performance of the methods on the following models:

(i) Yi = (f T
i β1)/{0.5 + (f T

i β2 + 1.5)2} + 0.5εi;
(ii) Yi = exp(f T

i β1)+ 2|f T
i β2 + 1| + 0.1|f T

i β1|εi;
(iii) Yi = (f T

i β1)
2 + 2|f T

i β2 + 1| + 0.1(f T
i β1)

2εi.

Here εi follows the standard normal distribution. For Case I, we evaluated the semiparametric
sliced inverse regression and semiparametric principal Hessian directions under model (i), and
evaluated the semiparametric sliced average variance estimation and semiparametric dimension
reduction under model (ii). For Case II, we evaluated the semiparametric sliced inverse regression
and semiparametric principal Hessian directions under model (i), and evaluated the semiparamet-
ric sliced average variance estimation and semiparametric dimension reduction under model (iii).
We designed these simulations to limit the resulting Yi values to within 200 to avoid numerical
instability. For each method, the computation time is roughly 10 seconds when the initial value
is randomly selected, and 3 seconds when the initial value is near the truth. The above simulation
settings are summarized in the Supplementary Material.

We compared the proposed semiparametric method and the original dimensional reduction
techniques in terms of the Euclidean distances between the resulting estimators and the true
values; the results are shown in the Supplementary Material. We also evaluated the asymptotic
performances of the estimators, and report the results in the Supplementary Material. Further,
we compared the empirical distribution of the estimator with the normal distribution using the
Kolmogorov–Smirnov normal test. The results show that the estimators are close to the true
values and that the confidence intervals have coverage probabilities close to the nominal level.
In addition, most of the estimators achieve asymptotic normality, with the p-values from the
Kolmogorov–Smirnov normal test being less than 0.00625 = 0.05/8, the bound adjusted for
multiple testing.

5.2. Analysis on eQTL discovery

In this subsection we illustrate the application of the proposed semiparametric method to
eQTL discoveries. Recall that the illustrative genotype-tissue expression dataset contains n = 278
subjects. The expression levels of the gene ENSG00000225880.4 in the subjects’ lung tissue were
measured by the RNA-Seq technique. The subjects were also genotyped on 117 SNPs within 20 kb
of the target gene. In addition, we consider 40 controlling covariates, including gender, platform,
three principal components of genome-wide gene expressions, and 35 principal components
of genome-wide SNPs. These covariates were included in previous genotype-tissue expression
analyses to control for population stratification. In total, we have p = 157 covariates.

The approach proposed here has the capacity to include all the SNPs in one model which can
take the inter-SNP correlations into account. It consequently enhances the power in identifying
eQTLs and may provide new insights into the SNP functionals. To apply the proposed method
to the genotype-tissue expression data, we first perform a principal component analysis on the
157 covariates. Following the eigenvalue ratio method discussed in Ahn & Horenstein (2013),
we compute

q̃ = arg max
1�q�157

log(Vq−1/Vq)

log(Vq/Vq+1)

and obtain q̃ = 5, where Vq is the average of the first q eigenvalues of the matrix BTB. This
suggests picking the first five factors for the second-stage analysis. To be more conservative, we
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Fig. 3. Bar graph of principal components.

plot in Fig. 3 the percentage of variance explained by each of the first 15 principal components.
We can see that the results for the fifth and the sixth components are very similar. Taking

this into account, q = 6 seems a reasonable choice in our analysis. To avoid carrying out futile
analysis, we perform a test of the null hypothesis that none of the first six factors is related to
the response using a method in the spirit of Zhu et al. (2011). To this end, we first calculate
R̂k = n−1 ∑n

j=1{n−1 ∑n
i=1 f̂ik I (Yi < Yj)}2 for each estimated factor f̂ik (k = 1, . . . , 6), resulting

in (R̂k : k = 1, . . . , 6) = (0.0061, 0.00026, 0.0037, 0.0022, 0.0009, 0.0002). Then we select the
threshold by permuting the rows of F̂ 100 times. In the lth permutation, let F̃l be the permuted
F̂ and f̃ikl its (i, k) element, and compute R̃kl = n−1 ∑n

j=1{n−1 ∑n
i=1 f̃iklI (Yi < Yj)}2. Then we

take maxk ,l R̃kl = 0.0039 over the 100 replicates to be our threshold for rejecting the null model
that there is no factor with an effect on the response. Clearly, R̂1 > 0.0039. This ensures that
at least one factor has an effect on the response even when considered separately. Moreover, we
use the validated information criterion proposed in Ma & Zhang (2015) to select the structural
dimension d. The validated information criterion values for the four semiparametric dimension
reduction methods, i.e., semiparametric sliced inverse regression, semiparametric sliced average
variance estimation, semiparametric dimension reduction, and semiparametric principal Hessian
directions, are presented in the upper part of Table 1.

The validated information criterion values are smallest at d = 1 except for semiparametric
sliced average variance estimation, which achieves the minimum at d = 2. We adopted majority
voting and set d = 1 for the model to describe the association between the gene expressions
and genetic variants. We subsequently estimated β̂ using the four semiparametric dimension
reduction methods and report the corresponding estimates along with their standard errors in the
lower part of Table 1. The four sets of estimation results are similar.

We further compared the semiparametric dimension reduction methods and the classical dimen-
sion reduction methods through two-fold crossvalidation. Specifically, we randomly split the data
into two equal parts, the training and testing datasets, and computed the mean predictive errors
for each method. The averages of the mean predictive errors over 100 random splits were 1.0715,
1.0755, 1.0378, and 1.0294 for the semiparametric sliced inverse regression, semiparametric
sliced average variance estimation, semiparametric dimension reduction, and semiparametric
principal Hessian directions methods, while they were 1.0985, 1.1170, 1.1043, and 1.1138 for
the original sliced inverse regression, sliced average variance estimation, directional regression,
and principal Hessian directions methods, respectively. It is clear that the semiparametric meth-
ods outperform the classical dimension reduction methods in terms of prediction in this dataset.
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Table 1.Validated information criterion values at d = 1, . . . , 4 together with estimates and stan-
dard errors under d = 1 for semiparametric sliced inverse regression, semiparametric sliced
average variance estimation, semiparametric principal Hessian directions, and semiparametric

dimension reduction in the gene-SNP association analysis
S-SIR S-SAVE S-DR S-PHD

Validated information criterion
d = 1 103.2497 200.1980 118.9829 78.1923
d = 2 160.3691 133.8987 144.3405 122.2833
d = 3 186.1471 152.0223 150.8336 142.5507
d = 4 194.0230 220.2505 186.5501 183.7236

Estimate (standard error)
β12 −0.124 (0.151) −0.058 (0.151) −0.056 (0.118) −0.112 (0.295)
β13 −0.539 (0.178) −0.576 (0.120) −0.668 (0.193) −0.465 (0.214)
β14 −0.534 (0.145) −0.700 (0.248) −0.674 (0.095) −0.462 (0.149)
β15 −0.134 (0.144) −0.266 (0.136) −0.270 (0.120) −0.141 (0.149)
β16 −0.055 (0.065) −0.061 (0.079) −0.088 (0.135) −0.021 (0.126)

S-SIR, semiparametric sliced inverse regression; S-SAVE, semiparametric sliced average variance estimation;
S-PHD, semiparametric principal Hessian directions; S-DR, semiparametric dimension reduction.
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Fig. 4. (a) Base-10 log-transformed p-values (−log10 pj) for each estimated covariate effect. (b) Sorted base-10
log-transformed p-values versus 0.05j/157. (c) False discovery rate level versus the number of identified SNPs.

As the semiparametric principal Hessian directions method has the best performance, in that it
has the smallest mean predictive error as shown in Table 1, we carry out further analysis based
on this estimator.

To assess the effect of individual SNPs on the gene expression, we estimate the α coefficients
α̂ ≡ B̂(B̂TB̂)−1β̂, where B̂ is the factor loading obtained from the first-step principal component
analysis. The first p1 components of vector α correspond to the effects of SNPs on the gene
expression level in the sufficient direction. To test the null hypothesis of αj = 0, we calculate the
p-values via pj ≡ 2[1−�{|α̂j|/ŝd(α̂j)}], where α̂j is the jth component in α̂ and� is the standard
normal distribution function. The −log10 of the resulting p-values are plotted in Fig. 4 and are
compared with −log10(0.05j/157) to adjust for multiple comparisons. As shown in Fig. 4(a), we
identified 27 variants at loci in the Supplementary Material which are significantly associated with
the gene expression level after Bonferroni correction. These SNPs are also reported in genotype-
tissue expression as eQTLs through marginal regressions. Since Bonferroni correction is known
to be overly conservative, we further performed an analysis to control the false discovery rate
(Benjamini & Hochberg, 1995) to within 0.05 by treating the p-values as independent. We present
the results of the false discovery rate-based analysis in Fig. 4(b). Compared with the traditional
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Fig. 5. Scatterplot of the first and second factor loadings of the 27 identified SNPs. , Cluster 1; , Cluster 2;
, Cluster 3; , Cluster 4.

pairwise analysis, the proposed joint analysis has great potential for studying the connections
among the eQTLs.

To further validate the 27 identified SNPs, we extracted their functional annotation scores
across 13 tissue types, including lung, adipose, aorta, liver, brain, intestine, esophagus, pancreas,
gastric, heart, ovary, thymus, and spleen. Functional annotation scores were recently developed
by Backenroth et al. (2018) to predict the functional effect of noncoding genetic variants in
different cell and tissue types. These scores are estimated from independent roadmap datasets
(The ENCODE Project Consortium, 2012; Kundaje et al., 2015) and measure the probability of
an SNP regulating gene expression in certain cell and tissue types. On average, about 5% of SNPs
have functional scores exceeding 0.01 in lung tissue, estimated from the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2012).

Of the 27 SNPs that we identified in the lung tissue, 23 have positive functional annotation
scores, which further confirms their function in regulating gene expression in lung tissue. In
addition, further investigations of the factor loadings of the identified eQTLs also provide useful
insights into how those eQTLs function. Figure 5 shows the distributions of the first and second
factor loadings of the 27 SNPs. They naturally cluster the SNPs into four groups. To investigate
whether the factor loadings provide a meaningful grouping of the SNPs, we plotted their functional
annotation scores across the 13 tissue types by cluster in Fig. 6. We observe distinctive patterns of
tissue-specific functional effects across the four clusters. Specifically, clusters 2 and 4 both have
a strong effect in lung tissue, but have different effect patterns across other tissues. Cluster 2 has
stronger effects in liver, brain, intestine and heart tissue, but the effect of cluster 4 is not strong
in any tissue types other than lung. On the other hand, cluster 1 has a moderate effect in lung
tissue and strong effects in some other tissues such as adipose, liver, intestine and heart, whereas
cluster 3 has a very weak effect in lung tissue but strong effects in brain and thymus tissue.
Hence, the factor loadings do provide meaningful groupings, and can help us to understand the
underlying potential functional pathways of the identified SNPs.

Remark 2. In our analysis, we used a false discovery rate level of 0.05 to guide the selection of
eQTLs. In practice, this level may not be suitable for screening in as many true signals as possible
for follow-up studies (Craiu & Sun, 2008). We examine the relationship between the number of
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Fig. 6. Functional annotation scores of the 27 SNPs by cluster.

identified SNPs and the false discovery rate level in Fig. 4(c). Researchers should determine the
proper false discovery rate level based on their objectives for the follow-up studies.
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